Vivo, provocador, sorprendente: dimensiones emocionales de los materiales bio-sinérgicos para un diseño socialmente significativo

Contenido principal del artículo

Stefano Parisi
Shonali Shetty

Resumen

La polinización cruzada entre biología y electrónica está haciendo emerger nuevos materiales con cualidades híbridas, dinámicas e interactivas. En este artículo exploratorio intentamos una definición y una taxonomía original de los materiales bio-sinérgicos. Analizando los mejores ejemplos dentro de la taxonomía, argumentamos que ellos suscitan experiencias materiales emergentes relacionadas con el hecho de estar vivos y ser provocadores y sorprendentes, desplegando en los usuarios un conjunto único de emociones, sentimientos y experiencias. Tales experiencias promueven un cambio en los valores de la sociedad, abordando un complejo sistema de valores relacionados con la interdependencia, la conciencia ambiental, las colaboraciones multi-especies, el cuidado, la transitoriedad y la imperfección. Además, re-centran los enfoques de diseño, pasando del diseño antropocéntrico al diseño “más que humano”. Los hallazgos se articulan en un marco original de materiales bio-sinérgicos para un diseño socialmente significativo. Esta investigación preliminar puede extenderse a un robusto tema de investigación, catalizando implicaciones positivas para la naturaleza, la tecnología y la sociedad.

Detalles del artículo

Cómo citar
Parisi, S., & Shetty, S. (2020). Vivo, provocador, sorprendente: dimensiones emocionales de los materiales bio-sinérgicos para un diseño socialmente significativo. Diseña, (17), 128–159. https://doi.org/10.7764/disena.17.128-159
Sección
Artículos originales
Biografía del autor/a

Stefano Parisi, Politecnico di Milano, Departamento de Diseño

 

Licenciado (Bs) en Diseño, Politecnico di Milano. MSc en Diseño de Productos para la Innovación, Politecnico di Milano. Doctor (c), Politecnico di Milano. Es investigador en el Departamento de Diseño del Politecnico di Milano y miembro del Materials Experience Lab y del DIY Materials Research Group. Trabaja en experiencia con materiales emergentes. Su investigación se centra en la innovación en diseño, la enseñanza y las metodologías de transferencia de conocimiento sobre materiales emergentes para el diseño, en particular los que tienen cualidades híbridas, dinámicas e interactivas. Algunas de sus publicaciones más recientes son “The Hybrid Dimension of Material Design: Two Case Studies of a Do-it-yourself Approach for the Development of Interactive, Connected, and Smart Materials” (con M. Holzbach y V. Rognoli; Advances in Intelligent Systems and Computing 1131, Springer, 2020), “Design for ICS Materials: A Tentative Methodology for Interactive, Connected, Smart Materials Applied to Yacht Design” (con A. Bionda, A. Ratti y V. Rognoli; Advances in Intelligent Systems and Computing 903, Springer, 2020) y “Material Tinkering. An Inspirational Approach for Experiential Learning and Envisioning in Product Design Education” (The Design Journal, vol. 20, sup. 1).

Shonali Shetty, Universidad de Utrecht, Departamento de Biología

 

Licenciada en Diseño Integrado, Köln International School of Design. PGD, Marketing y Comunicación avanzados. BBM en Administración de Empresas, Universidad de Bangalore. Colabora como investigadora en el Departamento de Biología de la Universidad de Utrecht. También es académica de la Universidad de Ciencias Aplicadas de Utrecht, donde ejerce la docencia en temas como las humanidades, el diseño circular y el diseño centrado en las personas. Fundó el estudio de diseño MeshLabs (con sede en Róterdam), enfocado en impulsar narrativas transculturales y bio-inspiradas a través del diseño. Como diseñadora crítica, está interesada en cerrar la brecha que distingue entre naturaleza y cultura, proponiendo escenarios alternativos que adoptan un enfoque de diseño más que humano. Creados en colaboración con biólogos, sus proyectos “Man and Fungi” (2020) y “Project AeR” (2018) son ejemplos de dicha integración.

Citas

ANTONELLI, P. (Ed.). (2008). Design and the Elastic Mind. The Museum of Modern Art, New York.

ASHBY, M. F., & JOHNSON, K. (2002). Materials and Design: The Art and Science of Material Selection in Product Design. Butterworth-Heinemann.

ASHBY, M. F., SHERCLIFF, H., & CEBON, D. (2007). Materials: Engineering, Science, Processing and Design. Elsevier.

BAHRUDIN, F. I., & AURISICCHIO, M. (2018). ‘Is this Wallet Made of Real Leaves?’: A Study of Sustainable Materials’ Emotional Experiences. In P. Ekströmer, S. Schütte, & J. Ölvander (Eds.), DS 91: Proceedings of NordDesign 2018, Design in the Era of Digitalization. https://www.designsociety.org/publication/40880/%E2%80%98Is+this+wallet+made+of+real+leaves%3F%E2%80%99%3A+A+Study+of+Sustainable+Materials%27+Emotional+Experiences

BARAD, K. (2007). Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning. Duke University Press.

BARATI, B., KARANA, E., & HEKKERT, P. (2019). Prototyping Materials Experience: Towards a Shared Understanding of Underdeveloped Smart Material Composites. International Journal of Design, 13(2), 21–38.

BERGSTRÖM, J., CLARK, B., FRIGO, A., MAZÉ, R., REDSTRÖM, J., & VALLGÅRDA, A. (2010). Becoming Materials: Material Forms and Forms of Practice. Digital Creativity, 21(3), 155–172. https://doi.org/10.1080/14626268.2010.502235

BRAIDOTTI, R. (2019). A Theoretical Framework for the Critical Posthumanities. Theory, Culture & Society, 36(6), 31–61. https://doi.org/10.1177/0263276418771486

BROWNELL, B. (2016). From Matter to X-matter: Exploring the Newfound Capacities of Information-enhanced Materials. Materials & Design, 90, 1238–1247. https://doi.org/10.1016/j.matdes.2015.03.027

BUETOW, S., & WALLIS, K. (2019). The Beauty in Perfect Imperfection. Journal of Medical Humanities, 40(3), 389–394. https://doi.org/10.1007/s10912-017-9500-2

CAMERE, S., & KARANA, E. (2017). Growing Materials for Product Design. In E. Karana, E. Giaccardi, N. Nimkulrat, K. Niedderer, & S. Camere (Eds.), Alive. Active. Adaptive: Proceedings of International Conference on Experiential Knowledge and Emerging Materials (EKSIG 2017) (pp. 101–115). TU Delft Open.

CAMERE, S., & KARANA, E. (2018a). Fabricating Materials from Living Organisms: An Emerging Design Practice. Journal of Cleaner Production, 186, 570–584. https://doi.org/10.1016/j.jclepro.2018.03.081

CAMERE, S., & KARANA, E. (2018b). Experiential Characterization of Materials: Toward a Toolkit. In C. Storni, K. Leahy, M. McMahon, E. Bohemia, & P. Lloyd (Eds.), Proceedings of DRS 2018 International Conference: Catalyst (Vol. 4, pp. 1685–1705). https://doi.org/10.21606/drs.2018.508

CAPRA, F., & LUISI, P. L. (2014). The Systems View of Life: A Unifying Vision. Cambridge University Press. https://doi.org/10.1017/CBO9780511895555

COELHO, M., HALL, L., BERZOWSKA, J., & MAES, P. (2009). Pulp-based Computing: A Framework for Building Computers out of Paper. CHI ’09 Extended Abstracts on Human Factors in Computing Systems, 3527–3528. https://doi.org/10.1145/1520340.1520525

COLLET, C. (2013). This is Alive. http://thisisalive.com/

CORNISH, E. H. (1987). Materials and the Designer. Cambridge University Press.

CRIPPA, G., ROGNOLI, V., & LEVI, M. (2012). Materials and Emotions: A Study on the Relations Between Materials and Emotions in Industrial Products. In J. Brassett, P. P. M. Hekkert, G. D. S. Ludden, M. Malpass, & J. Mc-Donnell (Eds.), Proceedings of the Eighth International Conference on Design & Emotion. https://doi.org/10.5281/zenodo.2598370

DESMET, P. M. A. (2013). Positive Design. Inaugural Lecture. TU Delft.

DESMET, P. M. A., & HEKKERT, P. (2007). Framework of Product Experience. International Journal of Design, 1(1), 57–66.

ESCOBAR, A. (2018). Designs for the Pluriverse: Radical Interdependence, Autonomy, and the Making of Worlds. Duke University Press.

FERRARA, M., LANGELLA, C., & LUCIBELLO, S. (2019). Bio-smart Materials for Product Design Innovation: Going Through Qualities and Applications. In W. Karwowski & T. Ahram (Eds.), Intelligent Human Systems Integration 2019 (pp. 634–640). Springer. https://doi.org/10.1007/978-3-030-11051-2_96

FETSCHER, I. (1973). Karl Marx on Human Nature. Social Research, 40(3), 443–467.

GAMBLE, C. N., HANAN, J. S., & NAIL, T. (2019). What Is New Materialism? Angelaki, 24(6), 111–134. https://doi.org/10.1080/0969725X.2019.1684704

GATTO, G., & MCCARDLE, J. R. (2019). Multispecies Design and Ethnographic Practice: Following Other-Than-Humans as a Mode of Exploring Environmental Issues. Sustainability, 11(18), 5032. https://doi.org/10.3390/su11185032

GIACCARDI, E., & KARANA, E. (2015). Foundations of Materials Experience: An Approach for HCI. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 2447–2456. https://doi.org/10.1145/2702123.2702337

Guattari, F. (2000). The Three Ecologies (I. Pindar & P. Sutton, Trans.). The Athlone Press.

HOLZBACH, M., & KELLNER, P. (2014). Materialdesign: Analog and Digital Design Processes Exploring the World Between Material and Structure (J. Gaines, Trans.). Hochschule für Gestaltung.

INGOLD, T. (2000). The Perception of the Environment: Essays on Livelihood, Dwelling and Skill. Routledge.

KAGAN, S. (2011). Aesthetics of Sustainability: A Transdisciplinary Sensibility for Transformative Practices. Transdisciplinary Journal of Engineering & Science, 2. https://doi.org/10.22545/2011/00014

KAN, V., VARGO, E., MACHOVER, N., ISHII, H., PAN, S., CHEN, W., & KAKEHI, Y. (2017). Organic Primitives: Synthesis and Design of pH-Reactive Materials using Molecular I/O for Sensing, Actuation, and Interaction. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 989–1000. https://doi.org/10.1145/3025453.3025952

KARANA, E., BARATI, B., ROGNOLI, V., & ZEEUW VAN DER LAAN, A. (2015). Material Driven Design (MDD): A Method to Design for Material Experiences. International Journal of Design, 9(2), 35–54.

KARANA, E., BLAUWHOFF, D., HULTINK, E.-J., & CAMERE, S. (2018). When the Material Grows: A Case Study on Designing (with) Mycelium-based Materials. International Journal of Design, 12(2), 119–136.

KARANA, E., HEKKERT, P., & KANDACHAR, P. (2008). Materials Experience: Descriptive Categories in Material Appraisals. In I. Horvath & Z. Rusak (Eds.), Seventh International Symposium on Tools and Methods of Competitive Engineering (TMCE 2008) (pp. 399–412). Delft University of Technology.

KARANA, E., PEDGLEY, O., & ROGNOLI, V. (2015). On Materials Experience. Design Issues, 31(3), 16–27. https://doi.org/10.1162/DESI_a_00335

KRETZER, M. (2017). Information Materials: Smart Materials for Adaptive Architecture. Springer.

LATOUR, B. (2005). Reassembling the Social: An Introduction to Actor-Network-Theory. Oxford University Press.

LAZARO VÁSQUEZ, E. S., & VEGA, K. (2019). From Plastic to Biomaterials: Prototyping DIY Electronics with Mycelium. Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, 308–311. https://doi.org/10.1145/3341162.3343808

LOVELOCK, J. (2000). Gaia: A New Look at Life on Earth. Oxford University Press.

LUCIBELLO, S., FERRARA, M., LANGELLA, C., CECCHINI, C., & CARULLO, R. (2018). Bio-smart Materials: The Binomial of the Future. In W. Karwowski & T. Ahram (Eds.), Proceedings of the 1st International Conference on Intelligent Human Systems Integration (IHSI 2018) (Vol. 722, pp. 745–750). Springer. https://doi.org/10.1007/978-3-319-73888-8_115

LUDDEN, G. D. S., SCHIFFERSTEIN, H. N. J., & HEKKERT, P. (2008). Surprise as a Design Strategy. Design Issues, 24(2), 28–38. https://doi.org/10.1162/desi.2008.24.2.28

LUDDEN, G. D. S., SCHIFFERSTEIN, H. N. J., & HEKKERT, P. (2012). Beyond Surprise: A Longitudinal Study on the Experience of Visual-Tactual Incongruities in Products. International Journal of Design, 6(1), 1–10.

MANZINI, E. (1986). The Material of Invention: Materials and Design. Arcadia.

MELCHIORRI, J. (2014). Silk Leaf. https://www.julianmelchiorri.com/Silk-Leaf

MINUTO, A., PITTARELLO, F., & NIJHOLT, A. (2014). New Materials = New Expressive Powers: Smart Material Interfaces and Arts, An Interactive Experience Made Possible Thanks to Smart Materials. Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces, 141–144. https://doi.org/10.1145/2598153.2598198

MORTON, T. (2010). The Ecological Thought. Harvard University Press.

PARISI, S., BIONDA, A., RATTI, A., & ROGNOLI, V. (2019). Design for ICS Materials: A Tentative Methodology for Interactive, Connected, and Smart Materials Applied to Yacht Design. In W. Karwowski & T. Ahram (Eds.), Intelligent Human Systems Integration 2019. IHSI 2019. Advances in Intelligent Systems and Computing (Vol. 903, pp. 661–666). Springer. https://doi.org/10.1007/978-3-030-11051-2_100

PARISI, S., HOLZBACH, M., & ROGNOLI, V. (2020). The Hybrid Dimension of Material Design: Two Case Studies of a Do-It-Yourself Approach for the Development of Interactive, Connected, and Smart Materials. In T. Ahram, W. Karwowski, A. Vergnano, F. Leali, & R. Taiar (Eds.), Intelligent Human Systems Integration 2020. IHSI 2020. Advances in Intelligent Systems and Computing (Vol. 1131, pp. 916–921). Springer. https://doi.org/10.1007/978-3-030-39512-4_140

PARISI, S., & ROGNOLI, V. (2016). Superfici imperfette. Material Design Journal, 1, 78–92.

PARISI, S., & ROGNOLI, V. (2017). Tinkering with Mycelium. A Case Study. In E. Karana, E. Giaccardi, N. Nimkulrat, K. Niedderer, & S. Camere (Eds.), Alive. Active. Adaptive: Proceedings of International Conference on Experiential Knowledge and Emerging Materials (EKSIG 2017) (pp. 66–78). TU Delft Open.

PARISI, S., ROGNOLI, V., SPALLAZZO, D., & PETRELLI, D. (2018). ICS Materials. Towards a Re-Interpretation of Material Qualities Through Interactive, Connected, and Smart Materials. In C. Storni, K. Leahy, M. McMahon, E. Bohemia, & P. Lloyd (Eds.), Proceedings of DRS 2018 International Conference: Catalyst (Vol. 4, pp. 1747–1761). https://doi.org/10.21606/drs.2018.521

PARISI, S., SPALLAZZO, D., FERRARO, V., FERRARA, M., CECONELLO, M. A., AYALA GARCÍA, C., & ROGNOLI, V. (2018). Mapping ICS Materials: Interactive, Connected, and Smart Materials. In W. Karwowski & T. Ahram (Eds.), Intelligent Human Systems Integration IHSI 2018. Advances in Intelligent Systems and Computing (Vol. 722, pp. 739–744). Springer. https://doi.org/10.1007/978-3-319-73888-8_114

PUIG DE LA BELLACASA, M. (2017). Matters of Care: Speculative Ethics in More Than Human Worlds. University of Minnesota Press.

RAZZAQUE, M. A., DOBSON, S., & DELANEY, K. (2013). Augmented Materials: Spatially Embodied Sensor Networks. International Journal of Communication Networks and Distributed Systems, 11(4), 453–477. https://doi.org/10.1504/IJCNDS.2013.057721

RITTER, A. (2006). Smart Materials in Architecture, Interior Architecture and Design. Birkhäuser.

ROGNOLI, V. (2004). I materiali per il design: Un atlante espressivo-sensoriale [Doctoral Dissertation. Politecnico di Milano].

ROGNOLI, V. (2010). A Broad Survey on Expressive-sensorial Characterization of Materials for Design Education. METU Journal of the Faculty of Architecture, 27(2), 287–300. https://doi.org/10.4305/METU.JFA.2010.2.16

ROGNOLI, V. (2015). Dynamic and Imperfect as Emerging Material Experiences. A Case Study. In L.-L. Chen, T. Djajadiningrat, L. M. G. Feijs, J. Hu, S. H. M. Kyffin, L. Rampino, E. Rodríguez, & D. Steffen (Eds.), Design and Semantics of Form and Movement (DeSForM 2015): Aesthetics of Interaction: Dynamic, Multisensory, Wise (pp. 66–76). Koninklijke Philips Electronics.

ROGNOLI, V., & AYALA GARCÍA, C. (2018). Materia emocional. Los materiales en nuestra relación emocional con los objetos. RChD: Creación y Pensamiento, 3(4), 1–15. https://doi.org/10.5354/0719-837X.2018.50297

ROGNOLI, V., & KARANA, E. (2014). Toward a New Materials Aesthetic Based on Imperfection and Graceful Aging. In E. Karana, O. Pedgley, & V. Rognoli (Eds.), Materials Experience: Fundamentals of Materials and Design (pp. 145–154). Butterworth-Heinemann.

SAFFER, D. (2009). Designing for Interaction: Creating Innovative Applications and Devices. New Riders.

SCOTT, J. (2012). Knitting Moves: Bio-inspired Transformable Textiles for Knitted Architecture. Studies in Material Thinking, 7, Paper 08.

SCOTT, J. (2018). Responsive Knit: The Evolution of a Programmable Material System. In C. Storni, K. Leahy, M. McMahon, P. Lloyd, & E. Bohemia (Eds.), Proceedings of DRS 2018 International Conference: Catalyst (Vol. 4, pp. 1800–1811). https://doi.org/10.21606/drs.2018.566

SHETTY, S. (2018). Project AeR: A Process Driven Approach to Bio-design. Köln International School of Design.

SPUTNIKO. (2015). Tranceflora. https://sputniko.com/Tranceflora

TAO, H., KAPLAN, D. L., & OMENETTO, F. G. (2012). Silk Materials – A Road to Sustainable High Technology. Advanced Materials, 24(21), 2824–2837. https://doi.org/10.1002/adma.201104477

TIBBITS, S. (Ed.). (2017). Active Matter. MIT Press.

VALLGÅRDA, A., & REDSTRÖM, J. (2007). Computational Composites. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1, 513–522. https://doi.org/10.1145/1240624.1240706

YAO, L., OU, J., CHENG, C.-Y., STEINER, H., WANG, W., WANG, G., & ISHII, H. (2015). bioLogic: Natto Cells as Nanoactuators for Shape Changing Interfaces. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 1–10. https://doi.org/10.1145/2702123.2702611

Artículos más leídos del mismo autor/a

Nota: Este módulo requiere de la activación de, al menos, un módulo de estadísticas/informes. Si los módulos de estadísticas proporcionan más de una métrica, selecciona una métrica principal en la página de configuración del sitio y/o en las páginas de propiedades de la revista.