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Abstract 
 
The surface condition of bike lanes is one of the main factors that cyclists consider when choosing their route, because it affects their travelling comfort, inasmuch as 
it is related to the vibrations they experience while riding. The existing alternatives to determine this condition either do not correspond to the cyclist’s reality or their 
application is complex. A methodology based on a logistic regression is proposed, which is objectively and specifically aimed at detecting bike-lane pavement failures 
and thus inferring its condition in the analyzed section. As a proof of concept of the proposed methodology, a field experiment was designed, which emulates two 
specifics defects: pavement upheavals and potholes. Data collection was carried out by attaching inertial sensors to the test bicycle. The application of the proposed 
methodology allowed identifying the necessary inertial variables to assess the considered failures. Among the latter, the main ones are rotations in the three axes and 
vertical acceleration. Four models that could correctly identify pavement issues were generated with these variables. In the future, the results thereof will allow 
building an indicator to infer the surface condition based on the vibrations felt by cyclists, and thus establish a level of service associated to the bike-lane pavement 
through these indicators. 
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Resumen 
 
Uno de los principales factores que consideran los ciclistas al escoger su ruta es la condición superficial de las ciclovías, ya que, al estar relacionado con las 
vibraciones experimentadas, afecta la comodidad del viaje. Las alternativas existentes para determinar esta condición no responden a la realidad del ciclista o son de 
compleja aplicación. Se propone una metodología basada en una regresión logística, que sea objetiva y específica para detectar irregularidades en el pavimento de 
ciclovías y así inferir la condición del mismo en el tramo analizado. Como prueba de concepto de la metodología propuesta, se diseñó un experimento en terreno 
que emula dos deterioros específicos: levantamientos del pavimento y baches. La recolección de estos se realizó mediante dispositivos inerciales adosados a una 
bicicleta de prueba. Al aplicar la metodología propuesta se identificaron las variables inerciales necesarias para identificar las irregularidades consideradas. Entre 
ellas destacaron las rotaciones en los tres ejes y la aceleración vertical. Con estas variables, se generaron cuatro modelos capaces de identificar correctamente los 
problemas del pavimento. A futuro, con los resultados obtenidos se puede construir un indicador capaz de inferir el estado de la superficie a partir de las vibraciones 
experimentadas por los ciclistas y así establecer un nivel de servicio asociado al pavimento de una ciclovía mediante estos indicadores. 
 
Palabras clave: Ciclovías, estado del pavimento, vibraciones, regresión logística, IMU 
 
 
 
 

1. Introduction 
 

Different studies worldwide have demonstrated that 
exclusive bicycle infrastructures in good conditions favor their 
use (Garrard et al., 2008; Pucher et al., 2011; Pucher et al., 
2010). A highly relevant aspect of the bicycle infrastructure is 
the bike-lane pavement condition. This is one of the main 
factors that bike riders consider when choosing their route, 
because the state of the road is directly related to the 
vibrations, which affect their travelling experience and 
comfort (Landis et al., 1997; Jensen, 2007; Lépine et al., 
2014; Lépine et al., 2011; Martens, 2011). 
 
 
 
 
 
 
 

 
 
 

A procedure used for assessing bike-lane pavements is 
the use of scales based on visual inspections. One of the 
biggest problems with this kind of evaluation is their 
subjectivity, because it partly depends on the criterion of the 
observer (Sprinkle Consulting, 2007; Landis, 1994). 

The International Roughness Index (IRI) is another 
technique used for determining the surface condition of the 
pavement (Barbudo et al., 2015; MINVU, 2015). For 
example, in Australia, the ARRB uses a walking profilometer 
to collect the data needed for calculating the IRI (Cairney and 
King, 2003). In Belgium, Martens (2011) attached a third 
wheel to the bikes, which operated as a bike trailer and 
recorded the vibrations for calculating IRI as the bike travelled 
along the road. In Chile, the “Bike Lane Construction Manual: 
Technical Standard” (Ministry of Housing and Urban 
Planning (MINVU), 2015) indicates that a completed bike-
lane construction should have an IRI of 4 m/km. Moreover, it 
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recommends controlling the surface with the Merlin device, 
by collecting 200 measurements at regular intervals of 200 
meters. In other words, one per meter, which is costly in 
terms of time and labor. 

In addition to the restrictions mentioned above, the IRI 
has to be modified in order to use it on bike lanes. In the first 
place, IRI was designed for motor vehicles circulating at high 
speeds, which cyclists cannot reach. Furthermore, the mass, 
size and geometry of the bicycle is quite different from those 
of a car, which directly affects the proposed index (Kohler, 
2015; Parkin, 2009; Martínez et al., 2011). These aspects are 
significant when evaluating a pavement surface, because its 
dynamic response is highly sensitive to the speed and 
geometry of the vehicle used (Fuentes et al., 2010). 
Therefore, it implies changing the model accordingly, once 
the bike-lane profile is available. 

Consequently, some studies have proposed 
developing other indexes. Denmark developed the Bicycle 
Profile Index (BPI), based on the methodology used to obtain 
IRI (Kohler, 2015). The calculation of this index uses a small 
motor vehicle equipped with accelerometers and laser 
profilometers that collect data as the vehicle circulates on the 
bike lane. The details of the algorithm for determining the 
BPU are subject to trade secret; the only aspect that is known 
in relation to the index is that it considers a longitudinal 
profile every 2.5 cm. Colombia created the Bike Lane 
Condition Index (ICC in Spanish) (Martínez et al., 2011). This 
index includes a series of factors such as pavement material, 
geometric characteristics, surface roughness and special 
features of road failures. In order to collect this information, 
field evaluations are carried out every two years. 

In any of the cases mentioned above, the resources 
required for a proper data collection hinder the subsequent 
control and/or monitoring that allow an adequate 
management of the network over time. An alternative to 
avoid this problem is using electronic devices, which collect 
data of the movement, either attached to the bike or worn by 
the user. In Concepción (Chile), Echaveguren et al. (2015) 
installed accelerometers and satellite navigation systems 
(GPS) on the bikes, with the aim of determining the surface 
condition of the city bike lanes. These devices recorded the 
vertical acceleration and their location when travelling along 
the bike lane. With this information, bike lanes were classified 
into three categories according to the acceleration level only. 
In this way, the purpose was to establish a global level of 
service, because accelerations are directly related to the 
comfort of users. However, driving maneuvers reflecting 
discomfort, which are not related to the vertical acceleration 
only, are expected. 

The objective of this research is to develop a 
methodology that can identify points in the bike lane where 
the pavement presents defects or deteriorations, by using data 
collected from people’s usual behavior, without the need for 
them to do any specific action (that is, from passive data). 

This methodology will allow deducing the pavement 
condition in the analyzed section and thus improve the 
infrastructure management, enhance users’ experience when 
travelling along and encouraging its use. The main hypothesis 
of this study is that cyclists behave differently based on the 
condition of the bike-lane pavement, and that these behaviors 
can be inferred from the data collected during their trips. This 
means to identify the data needed to detect pavement defects 
and, therefore, to build the models. Particularly, the aim is to 
determine the feasibility of using inertial measurement units 
(IMU) to obtain data that allow generating models able to 
identify the location of road defects. One of the advantages of 
using this type of technology is that they enable an automatic 
data collection, which in turn makes the application of this 
methodology easier. A further advantage of IMU is their small 
size and easy accessibility, which makes scaling easier. 
However, this technology requires an effort from the user to 
make data available, which can affect the number of users 
reporting their data. 

The rest of the paper is composed of three chapters. 
Chapter 2 introduces the methodology proposed to meet the 
main objective. Chapter 3 presents the main results obtained 
after applying the technology. Finally, chapter 4 indicates the 
main conclusions of the study and future lines of research. 
 

2. Methodology 
 

The proposed methodology considers the use of 
models whose dependent variable is related to the bike-lane 
pavement condition and the explanatory variables correspond 
to data provided by inertial sensors. This requires the 
calibration and validation of the models proposed. These 
tasks require data and, therefore, the following subsection 
describes the experiment carried out to collect the data. The 
second part of the present chapter describes the type of 
models considered and the indicators used for comparing 
their results. It is important to highlight that the data collected 
will allow doing a proof of concept of the methodology. That 
is, the experimental design does not aim at determining the 
most appropriate model, but verifying the potential of the 
idea behind the proposed methodology. 
 
2.1 Experimental design 

In order to perform the experiment, a 50-meter section 
of a bike lane inside the San Joaquín Campus of the Pontifical 
Catholic University of Chile was chosen. The location of this 
section is such that it allows the cyclist to reach the average 
circulation speed at its very beginning. This bike-lane wearing 
course is made of asphalt; it is two-way and isolated by 
physical dividers from the vehicle traffic flow. Figure 1 shows 
an aerial view of the location of the bike lane and a 
photograph showing its characteristics. 
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Following the decision about the place for collecting 
the data, the instruments to be used were defined. A single 
person of 1.74 m high and 74 kg drove the 26” Moonstone 
Oxford bicycle with front shock absorber. An inertial sensor 

was installed under the seat of the bike (Figure 2). The fact of 
using the same bicycle and driver allowed isolating the effect 
of other factors, which was a desirable aspect in this stage of 
the study.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The inertial sensor was a Smartphone with an 
accelerometer, a gyroscope, a compass and a navigation and 
localization satellite system (GPS). The SensorLog application 
(Thomas, 2017) was used for collecting the necessary data. 
The data collection frequency was 30 observations per 
second, where each observation is composed of a data series. 
Working with a high data-collection frequency was important 
to capture the type of desired behavior, since the expected 
maneuvers are usually quite fast. For example, if data is 

collected every 3 seconds, a maneuver for dodging or passing 
over a defect may not be captured. 

Two specific, usually annoying problems for users 
were chosen: pavement upheavals (generally caused by the 
roots of trees) and the presence of potholes in the road. The 
latter tends to be more annoying under rainy weathers; when 
it accumulates water, it will most probably wet the cyclist 
when passing through (Martínez et al., 2011). When 
confronted to these issues, users tend to dodge or reduce 

Figure 1. Map of the bike-lane location and photograph of its characteristics 
Source: Google Maps and self-preparation 

 

 

Figure 2. Diagram showing the location of the inertial sensor 
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their speed to deal with road defects and to avoid the 
resulting inconveniences. 

For recreating the first problem, wooden speed bumps 
were built in two different heights: six and four centimeters. 
The initial and final part of the speed bump was softened by a 
slope, which resembles real conditions. As for the pothole, 
cyclists tend to dodge this type of failures in the pavement; 
therefore, cones were used to recreate it. In this way, the 

cyclist would be forced to make the maneuver that the study 
sought to analyze. 

Five scenarios were built, where the first did not 
present alterations. Figure 3 shows the detail of the elements 
used and their location in the four other scenarios. One 
repetition was undertaken for the base scenario without 
alterations, while two repetitions were performed for the other 
scenarios with alterations. This allowed a total of nine runs 
throughout the analysis section with different elements.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1.1 Data Description and Processing 

The SensorLog application provides a series of data for 
each observation, from which data presenting changes during 
the experiment and not related to each other were chosen. 
The following data were selected: instantaneous speed (m/s), 
 

 geographical location in coordinates, true north or horizontal 
orientation in azimuth (360 degrees), rotation in the three 
axes (rad/s) and real acceleration in the three axes expressed 
in G (G = 9.8 m/s2). Figure 4 shows the orientation of each 
axis in relation to the bike’s movement. 

 
 

 
 
 
 
 
 
 

 

Figure 3. Experiment scenarios 
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The geographical coordinates of each observation 
were used to define their distance from the starting point (in 
meters). To that effect, the distance was calculated with 
Vincenty's formulas. 

The observations were grouped every 50 centimeters, 
which defined 101 records per run. The observations 
collected between 25 cm upstream and 25 cm downstream 
were considered for each point. With regard to the speed and 
horizontal orientation, the arithmetic mean was calculated for 
each point, while the root mean square was calculated for the 
acceleration and rotation in each axis, since these values 
fluctuated around zero. This generated 909 records in total. 
The first 10 meters of each row presented problems in relation 
to the geographical location; therefore, the decision was 
made to eliminate these records. Following this purge, the 
total number of records was reduced to 729. 

A new variable was created for each record, 
representing the presence of problems in the pavement (y), 
and corresponding to the dependent variable that this work 
expects to predict. This variable adopts values of one or zero, 
where the first indicates that the respective record 

corresponds to a position where a problem or deterioration 
on the pavement exists (and has an influence on cyclist 
behavior) and the second represents the absence of problems 
or deterioration.  

In order to establish the values of variable y, the 
location of the elements in the simulated scenarios was used 
and the length affecting each element was determined. In 
relation to speed bumps, 1.5 meters around the problem was 
considered enough. Regarding the cones, the maneuver was 
expected to show a longer effect, because in order to dodge 
the cones it was necessary to change the behavior before and 
after the element itself. Therefore, a length of 2.5 meters was 
considered with the cones located at the center. 

Table 1 shows an extract of the database used, where 
y is the estimated dependent variable. The course column 
indicates the run to which it belongs, thereby providing the 
simulated scenario. Dist (m) is the distance from the start 
point to the data recording point. The rotation and the 
acceleration around the ‘i’ axis are expressed by Rot_i and 
Acc_i, respectively. Figure 4 shows different rotations around 
each axis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2 Model Definition and Construction 

In order to meet the proposed objective, a logistic 
regression was used, which allows relating a dependent 
variable to a set of independent variables, in a non-linear 

way. In these regressions, the dependent variable is 
characterized by adopting values ranging from zero to one, 
which can be interpreted as a probability. Maximum 

Figure 4. Diagram of the coordinates of the axes in relation to the bike’s movement 
 

Table 1. Database Extract 
 

 

y Course Dist. 
(m) 

Speed 
(m/s) 

Rot_x 
(rad/s) 

Rot_y 
(rad/s) 

Rot_z 
(rad/s) 

Acc_x 
(G) 

Acc_y 
(G) 

Acc_z 
(G) 

0 2 13,5 3,57 0,09 0,10 0,19 0,20 0,23 0,17 

0 2 16 3,57 0,08 0,08 0,00 0,07 0,09 0,17 

1 3 24,5 3,51 1,33 0,27 0,25 0,52 1,13 0,92 
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likelihood estimation allow us to estimate this type of models 
(Hosmer and Lemeshow, 2000). 

The probability of occurrence of the object of study is 
estimated according to Equation 1. 
 

𝐏𝐢 =
𝟏

𝟏 + 𝐞!𝐟(𝐱𝐢)
 (1) 

 
In this case, P

i
 represents the probability of the 

analyzed point i to present a problem on the pavement. This 
probability is determined based on the characteristics 
gathered in point i, which correspond to a subset of the data 
presented for each row of Table 1, represented by vector 𝑥!. 
Thus, 𝑓 𝒙!  is the functional form in which these independent 
variables gathered in point i relate to each other. 
 

Consequently, the generation of the model consists in 
determining the function 𝑓 𝒙!  that best allows deducing the 
presence of defects on the bike lane. This means to define the 
variables that are part of the function and, therefore, to 
identify those best capable of capturing the cyclist’s 
maneuvers that are related to the presence of deterioration in 
the pavement. Thus, when determining the bike lane points 
that will most likely present problems or defects, it is possible 
to infer the pavement condition in that section. 

A correlation analysis is carried out in order to define 
the independent variables included in 𝑓 𝒙!  (Table 2). The 
analysis considers that one variable is related to another if 
their correlation values are higher than 0.5, and they have a 
close relation if this value is higher than 0.7 (Devijver and 
Kittler, 1982). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Since several rates are close to the cutoff value (0.5), 
the decision was made to further analyze the three closely 
correlated variables: Rot_x, Acc_y, and Acc_z. Rot_x and 
Acc_y are related when the cyclist encounters a speed bump, 
because the acceleration in the ‘y’ direction and the rotation 
around the ‘x’ axis are expected to increase. These two 
variables are also related to Acc_z, because the cyclist 
instinctively reduces the speed (changes in Acc_z) when 
encountering a problem in the bike lane. Therefore, none of 
the combinations of these variables was included in the same 
model. Following this consideration, different combination of 
independent variables were tested. 

Finally, four models were evaluated in the experiment 
presented in this study. That is, four different formulations of 
𝑓 𝒙!  were evaluated. Considering these four models, 
Equation 2 established the general formulation of 
function𝑓 𝒙! . 
 
 
𝐟(𝐱𝐢) = 𝛂 + 𝛃𝐲 ⋅ 𝐀𝐜𝐜_𝐲 + 𝛄𝐱 ⋅ 𝐑𝐨𝐭_𝐱 + 𝛄𝐲 ⋅ 𝐑𝐨𝐭_𝐲 + 𝛄𝐳 ⋅ 𝐑𝐨𝐭_𝐳    (2) 
 
 

Depending on the variables to be included in each 
model, 𝛼,𝛽! , 𝛾! , 𝛾! , 𝛾! are the parameters to be estimated for 
each of them. 

With regard to each model proposed, each 
parameter’s statistical significance was defined by the Z-test 
for a 95% confidence interval. For models in general, a 
typical goodness-of-fit test was run, which analyzed whether 
the proposed model was statistically different from the model 
considering just the constant. Moreover, the value of pseudo 
R2 was considered, which is related to the model’s predictive 
capacity. 

Additionally, the cross-validation technique was used 
with the aim of ensuring that the resulting parameters were 
independent from the database division (Jung and Hu, 2015). 
Therefore, the 729 records were randomly divided in five 
files. Iteratively, one of them was used for the validation of the 
models, while the other four were used in the calibration 
stage. 
 
 
 
2.2.1 Analyses 

A sensitivity analysis was carried out for each variable 
of each model. That is, we analyzed how the value of the 
dependent variable changes as the value of the studied 
independent variable changes, thereby keeping all others 
constant (and equal to their average value in the sample). 

With the purpose of comparing the proposed models, 
a detailed study was undertaken dealing with the number of 

Table 2. Correlation between variables 
 

  Rot_x Rot_y Rot_z Acc_x Acc_y Acc_z Speed 
Rot_x 1       

Rot_y 0,12 1      

Rot_z 0,07 0,57 1     

Acc_x 0,53 0,40 0,27 1    

Acc_y 0,77 0,10 0,09 0,56 1   

Acc_z 0,61 0,08 0,05 0,51 0,72 1  

Speed -0,10 -0,01 -0,01 -0,05 -0,05 -0,06 1 
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mistakes made and coincidences achieved according to the 
True Positives (TP), False Positives (FP), True Negatives (TN) 

and False Negatives (FN). Figure 5 details each concept 
according to the actual data and the results of the models. 

 
 
 
 
 
 
 
 
 
 
 
 

Errors type I (FP), type II (FN) and True Positives will 
be studied specifically. The first are usually less risky in this 
case, since they can be considered as a preventive measure. 
However, they imply a field-review expenditure when it is not 
required. Type II errors are concerning, because, in this study, 
it means that a deterioration in the pavement has been 
overlooked. True Positives are equal to the coincidences of 
actual problems, so they are highly important. 

In order to calculate these values, the mistakes made 
by the models will be averaged in the five cross-validation 
files. Regarding the True Positives, the average coincidence of 
each model will be calculated. 

Finally, the models’ TP and FN are analyzed in detail 
according to the simulated element: high speed bump, low 

speed bump and cones. The aim is to associate specific 
models to certain failures in the pavement and to identify the 
most relevant variables in each element. 
 

3. Results 
 

Table 3 shows the average parameters obtained for 
the four selected models, the values for maximum likelihood, 
the pseudo R2 and the classification of the models according 
to their variables. For comparison purposes, the table also 
includes the results for the model considering constants only 
(model E). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Results of a Diagnosis Test 

Table 3. Average values for each model 
 

 

Model 𝜶 𝜷𝒚 
(Acc_y) 

𝜸𝒙 
(Rot_x) 

𝜸𝒚 
(Rot_y) 

𝜸𝒛 
(Rot_z) 

Likelihood Pseudo 
R2 

Classification 

A -7,41 - 13,35 2,36 5,60 -43,42 64% Complex-Rotation 

B -7,64 8,43 - 3,96 4,27 -46,21 61% Complex- 
Acceleration 

C -7,17 - 14,25 - 7,10 -46,12 61% Simple- Rotation 

D -6,71 7,85 - - 6,48 -53,74 55% Simple- Acceleration 

E -3,06 - - - - -106,31 - Only constants 
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Thus, as an example, model B is defined by Equation 3, 
where 𝑓 𝑥  is as follows: 
 

𝐟(𝐱) = −𝟕,𝟔𝟒 + 𝟖,𝟒𝟑 ⋅ 𝐀𝐜𝐜_𝐲 + 𝟑,𝟗𝟔 ⋅ 𝐑𝐨𝐭_𝐲 + 𝟒,𝟐𝟕 ⋅ 𝐑𝐨𝐭_𝐳  (3) 
 

The rotation around the ‘z’ axis (Rot_z), associated to 
the natural inclination when maneuvering the bike, is 
observed in all four models. The rotations when dodging 
cones or facing speed bumps are very important. In these 
situations, the cyclist usually loses balance, and rotations are 
more relevant than accelerations. 

Models A and C include the rotation around the ‘x’ 
axis and models B and D present the acceleration in the 
direction of the ‘y’ axis. Therefore, the first group will be  
 

called rotational models and the second group, acceleration 
models. The rotation around the ‘y’ axis is present in models 
A and B, which implies that, in models C and D, a deviation 
of the axis through which the cyclist travels, is only explained 
by the rotation around the ‘z’ axis. Since models A and B 
have an additional variable, they were considered complex 
models, and models C and D were called simple models. 

In relation to the sensitivity analysis of the variables, 
Figure 6 shows the results obtained with the different models. 
In each graph, the vertical axis represents the probability that 
the pavement shows deterioration as each variable changes. 
The variables of each model are in the horizontal axis. The 
rotations are expressed in radians per second and the 
acceleration in G. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The shape of the curves of variables Rot_x and Acc_y 
reveals their importance when determining a deterioration in 
the pavement. Both variables have a robust threshold for 
change, because it remains pretty much the same in both 
complex (A and B) and simple models (C and D). For Rot_x, 

the limit is approximately 0.5 radians per second, while for 
Acc_y it has to exceed 0.8 G. 

When analyzing the complex models, Rot_y stands out 
for its little influence on Model A. In the model with 
acceleration, the variable has an influence on the probability 

Figure 6. Sensitivity of variables for each model 
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of occurrence of the condition when its values are close to 
the higher limit. 

The Rot_z variable (which is included in all models) is 
highly relevant in simple models (C and D). The curve of this 
variable gets sharper, similar to the curve of Rot_x and Acc_y. 
In both models, the threshold for change is equal to 0.8 
radians per second, which demonstrates the robustness of this 
variable in these models. 

In order to compare these models with the validation 
data, it was necessary to calculate the average of how many 
times (considering the five different subsets used as validation 
data) these models made the error type I and the error type II, 
as well as the average percentage of coincidences (Table 4). 

When analyzing errors type I, model C makes more 
mistakes, while model A makes an error only 1.6 times, on 
average. With regard to errors type II, acceleration models 
make more mistakes than rotational models. In both cases, 
the complex version of the model makes more mistakes than 
the simple version. Brief, model A is preferred, despite the 
fact that, marginally speaking, it makes more errors type II 
than model C. As for the percentage of coincidences, once 
again, rotational models obtain better results than those with 
acceleration, and simple models can identify more failures 
than complex models (within their category). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A differentiated analysis for all three elements 
simulated with the validation data is presented below. 
 
High Speed Bump 

Table 5 shows the coincidences on the total number  
 

of cases with y=1 for all four models and for each of the three 
points where y=1. All four models detect the failure with the 
records obtained in the exact location of the high speed 
bump and the next location. The records obtained in the 
location prior to the element show an average performance. 

 
 
 
 
 
 
 
 
 
 
 

Table 4. Errors and True Positives by model, with validation data 

Model Error Type I Error Type II True Positives 

A 1,6 3,4 55% 

B 1,8 3,8 50% 

C 2,6 3,2 58% 

D 1,8 3,6 53% 

 

Table 5. Coincidences for high speed bump by model and depending on the location of the record in relation to the failure 
 

Model PRIOR EXACT AFTER TOTAL 

A 1/2 2/2 2/2 83% 

B 1/2 2/2 2/2 83% 

C 1/2 2/2 2/2 83% 

D 2/2 2/2 2/2 100% 
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Low Speed Bump 

Table 6 shows the same information as Table 5, but in 
relation to the low speed bump. The records obtained in the 
location prior to the low speed bump do not allow detecting 
the failure easily, regardless of the model. However, in the 

same way as the high speed bump, all four models detect the 
failure with the records obtained in the exact location and the 
next one. Once again, simple models (C and D) make a 
better prediction than complex models in relation to this 
element. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Potholes 

Table 7 is similar to the two tables above, but in this 
case the effect of the failure (y=1) is considered in five points. 
The records obtained in the far end locations practically do 
not allow identifying the pothole, regardless of the model. The 
records obtained in the center locations allow all four models 
to partially identify the failure. If all the five locations are 

considered, models A and C (rotational) yield better results. 
However, they do not reach a 50% performance. If just the 
three center locations are analyzed, models A and C exceed a 
50% performance. This suggests that the fact of considering 
the records immediately before and after the exact location of 
the pothole would improve the performance of the models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6. Coincidences for low speed bump by model and depending on the location of the record in relation to the failure 
 

Model PRIOR EXACT AFTER TOTAL 

A 1/4 3/4 4/4 67% 

B 1/4 4/4 3/4 67% 

C 2/4 3/4 4/4 75% 

D 1/4 4/4 4/4 75% 

 

Table 7. Coincidences for potholes by model and depending on the location of the record in relation to the failure 
 

Modelo INITIAL PRIOR EXACT AFTER FINAL SUBTOTAL TOTAL 

A 0/4 2/4 3/4 2/4 1/4 58% 40% 

B 0/4 2/4 2/4 1/4 1/4 42% 30% 

C 1/4 3/4 2/4 2/4 0/4 58% 40% 

D 1/4 1/4 2/4 1/4 0/4 33% 25% 
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As a summary of the analysis by elements, and in 

relation to speed bumps, all four models behave in a similar 
way, where the most simple ones are more accurate. With 
regard to the pothole, rotational models show a better 
response than those with accelerations. Consequently, it is 
preferable to choose model A or C. 
 

4. Final remarks 
 

The proposed methodology is able to detect failures in 
the bike-lane pavement in an objective and specific way. 
Therefore, when determining the points in the bike lane that 
will most probably present failures, it is possible to deduce 
the pavement condition in that section. 

The logistic regressions did not pose problems for 
building the models with the characteristics of the sample and 
the dependent variable. Despite the fact that the experiment 
was very controlled, the designed methodology is easy to 
calibrate and apply at a large scale and, consequently, to real 
scenarios. 

With regard to the experiment carried out, all four 
models can objectively, autonomously and correctly identify 
the problems studied on the pavement of the bike-lane. 
Although all four models show similar behaviors, model A 
slightly stands out due to the values obtained in the 
experiment presented herein. The construction of these 
models allowed identifying the data needed to evaluate the 
condition of the pavement, where the rotations in the three 
axes and the vertical acceleration are the most important. 

An advantage of the proposed methodology is the use 
of inertial sensors, since it simplifies the data collection 
process. Due to the technological progress and the increasing 
offer of these devices, they are now easily accessible for 
anyone. Likewise, it is not an invasive methodology for 
obtaining data; therefore, in order to determine the condition 
of the pavement, it is not necessary to make interventions nor 
close the bike lane. All you need is bikes travelling with the 
sensor installed on them. 

An important aspect to be considered when scaling 
this methodology is the bias recorded in the data, due to the 
driving style of the cyclist and the type of bicycle used 

(Lépine et al., 2011). In order to validate the data, a great 
number of cyclists are required to circulate several times on 
the same section of analysis. Additionally, it is also necessary 
to collect data referred to other failures that might appear in 
the pavement. Future works should deal with all these 
aspects, with the aim of obtaining a representative model for 
other situations. 

Relying on a larger amount of data would allow 
refining the models developed in this work. In this 
perspective, new problems on bike-lane pavements could be 
identified, and large-scale models could be calibrated on site. 
Depending on the amount of data, it would be interesting to 
analyze other methodologies for developing these models. For 
example, the use of properly calibrated learning machines, 
which take into account the great number of potential 
problems, similar to the approach adopted by Catalan et al. 
(2018) in the context of driving public-transport vehicles. 

Given the data requirement mentioned above, the 
simplicity of this technology to obtain data gains more 
importance. For example, public bikes can be equipped with 
inertial sensors and GPS. In this way, the data needed to 
apply the proposed methodology could be collected on a 
continuous basis and on a large scale and thus identify the 
condition of the pavement in the bike lanes. In this case, it is 
even possible to calibrate the device and the model based on 
the own characteristics of public bikes, in addition to study 
other difficulties that cyclists must face or other types of 
sections (with curves, inclination, etc.). 

Finally, the methodology developed in this work can 
be used in various ways. In the short run, it provides the 
necessary information to develop a pavement management 
system specifically for bike lanes, because it allows identifying 
the problems on the road and making the corresponding 
maintenance works. In the long run, this methodology can 
generate a pavement quality index for bike lanes, based on 
the vibrations experienced by cyclists, so that a level of 
service can be associated to them. The level of service would 
enable the development of a pavement management system 
to improve users’ experience, provide information for building 
cycling route selection models, and it could be useful for 
calculating the capacity of bike lanes. 
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