Compatibility study of sargassum-based aggregate in Portland cement-based cementitious matrix
DOI:
https://doi.org/10.7764/RDLC.24.1.25Keywords:
Sargassum-based aggregate, plant-based concrete, sustainability.Abstract
Presently, because of the mounting environmental concerns that the construction sector is responsible for, given its high demand for natural resources and energy, there has been a surge in interest among various research groups in developing environmentally friendly construction materials that can reduce energy consumption during the occupancy phase of a building project. Among the solutions that have gained prominence are plant-based concretes.
The present study examined the compatibility between a Portland cement-based matrix and a Sargassum-based aggregate (Sargassum fluitans) obtained from the Mexican Atlantic coast. The raw materials were subjected to a physical and chemical characterization test to achieve this. Subsequently, a series of treatments were applied to the aggregate, including immersion in Ca(OH)2, boiling in NaOH, coating with solid paraffin, and hornification. Subsequently, the compatibility of the raw materials was assessed based on the heat of hydration rate and compressive strength of the samples, as well as microstructural tests on the cement paste, which identified by-products of OPC hydration.
The results show that the application of Ca(OH)2 immersion treatments improves the compressive strength at 28 days of curing by approximately 15 % concerning the sample with untreated aggregate, reaching a strength of 21.2 MPa. Conversely, the NaOH, solid paraffin, and hornification treatments diminish the compatibility, leading to a decline in the composite strength capacity.
Downloads
References
Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244–248. https://doi.org/10.1016/j.rser.2015.01.043
Agopyan, V., Savastano, H., John, V. M., & Cincotto, M. A. (2005). Developments on vegetable fibre–cement based materials in São Paulo, Brazil: an overview. Cement and Concrete Composites, 27(5), 527–536. https://doi.org/10.1016/j.cemconcomp.2004.09.004
Aitcin, P.-C. (2007). Binders for Durable and Sustainable Concrete. (Taylor & Francis, Ed.), Taylor & Francis e-Library (First Edit). London, England: CRC Press. https://doi.org/10.1201/9781482265767
Alawar, A., Hamed, A. M., & Al-Kaabi, K. (2009). Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, 40(7), 601–606. https://doi.org/10.1016/j.compositesb.2009.04.018
Albitar, M., Mohamed Ali, M. S., Visintin, P., & Drechsler, M. (2017). Durability evaluation of geopolymer and conventional concretes. Construction and Building Materials, 136, 374–385. https://doi.org/10.1016/j.conbuildmat.2017.01.056
American Society for Testing and Materials. C33/C33M-08 Concrete Aggregates, ASTM International § (2010). West Conshohocken, PA, UAS. https://doi.org/10.1520/C0033
Amziane, S., Collet, F., Lawrence, M., Magniont, C., Picandet, V., & Sonebi, M. (2017). Recommendation of the RILEM TC 236-BBM: characterisation testing of hemp shiv to determine the initial water content, water absorption, dry density, particle size distribution and thermal conductivity. Materials and Structures, 50(3), 167. https://doi.org/10.1617/s11527-017-1029-3
Amziane, S., Collet, F., Report, S., & Committee, R. T. (2017). Bio-aggregates Based Building Materials. (S. Amziane & F. Collet, Eds.), Springer Nature (Vol. 23). Paris, France: Springer Dordrecht. https://doi.org/10.1007/978-94-024-1031-0
Amziane, S., & Sonebi, M. (2016). Overview on Biobased Building Material made with plant aggregate. RILEM Technical Letters, 1(1), 31–38. https://doi.org/10.21809/rilemtechlett.2016.9
Ardanuy, M., Claramunt, J., García-Hortal, J. A., & Barra, M. (2011). Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers. Cellulose, 18(2), 281–289. https://doi.org/10.1007/s10570-011-9493-3
Ardanuy, M., Claramunt, J., & Toledo Filho, R. D. (2015). Cellulosic fiber reinforced cement-based composites: A review of recent research. Construction and Building Materials, 79, 115–128. https://doi.org/10.1016/j.conbuildmat.2015.01.035
Arnaud, L., & Gourlay, E. (2012). Experimental study of parameters influencing mechanical properties of hemp concretes. Construction and Building Materials, 28(1), 50–56. https://doi.org/10.1016/j.conbuildmat.2011.07.052
Belakroum, R., Gherfi, A., Kadja, M., Maalouf, C., Lachi, M., El Wakil, N., & Mai, T. H. (2018). Design and properties of a new sustainable construction material based on date palm fibers and lime. Construction and Building Materials, 184, 330–343. https://doi.org/10.1016/j.conbuildmat.2018.06.196
Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86(1–3), 3–9. https://doi.org/10.1016/j.compstruct.2008.03.006
Carmona, J. E., Morales-Martínez, T. K., Mussatto, S. I., Castillo-Quiroz, D., & Ríos-González, L. J. (2017). Propiedades químicas, estructurales y funcionales de la lechuguilla (Agave lechuguilla Torr.). Revista Mexicana de Ciencias Forestales, 8(42), 100–122. https://doi.org/10.29298/rmcf.v8i42.21
Carmona, J. E., Mussatto, S. I., Castillo-Quiroz, D., Morales-Martínez, T. K., & Ríos-González, L. J. (2018). Propiedades químicas, estructurales y funcionales de la lechuguilla (Agave lechuguilla Torr.). Revista Mexicana de Ciencias Forestales, 8(42), 100–122. https://doi.org/10.29298/rmcf.v8i42.21
Castillo, A., Castillo, A. A., Delgado, R. S., Hernández, E. G., Domínguez, M. M., Baeza, J. M. G., … Martínez, A. M. M. (2012). Aprovechamiento integral de los materiales lignocelulósicos. Materiales Lignocelulósicos, 13(4), 140–150. Retrieved from https://aulasvirtuales.udla.edu.ec/udlapresencial/pluginfile.php/926443/mod_resource/content/1/PAPER APROVECHAMIENTO DE MATERIAL LIGNOCELULÓSICO.pdf
Cechin, L., Matoski, A., Miranda de Lima, A., Monique, A., & Basso, R. (2018). Effect of treatments on high initial strength Portland cement and mosso bamboo compatibility. Revista Ingeniería de Construcción, 33(2), 127–136. Retrieved from http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-50732018000200127&lang=pt%0Ahttp://www.scielo.cl/pdf/ric/v33n2/0718-5073-ric-33-02-00127.pdf
Cérézo, V. (2005). Propriétés mécaniques, thermiques et acoustiques d’un matériau à base de particules végétales : approche expérimentale et modélisation théorique. L’Institut National des Sciences Appliquées de Lyon.
Chabannes, M., Nozahic, V., & Amziane, S. (2015). Design and multi-physical properties of a new insulating concrete using sunflower stem aggregates and eco-friendly binders. Materials and Structures, 48(6), 1815–1829. https://doi.org/10.1617/s11527-014-0276-9
Chennouf, N., Agoudjil, B., Boudenne, A., Benzarti, K., & Bouras, F. (2018). Hygrothermal characterization of a new bio-based construction material: Concrete reinforced with date palm fibers. Construction and Building Materials, 192, 348–356. https://doi.org/10.1016/j.conbuildmat.2018.10.089
Chikhi, M., Agoudjil, B., Boudenne, A., & Gherabli, A. (2013). Experimental investigation of new biocomposite with low cost for thermal insulation. Energy and Buildings, 66, 267–273. https://doi.org/10.1016/j.enbuild.2013.07.019
Claramunt, J., Ardanuy, M., García-Hortal, J. A., & Filho, R. D. T. (2011). The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement and Concrete Composites, 33(5), 586–595. https://doi.org/10.1016/j.cemconcomp.2011.03.003
Cury R, K., Aguas M, Y., Martinez M, A., Olivero V, R., & Chams Ch, L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), 122–132. https://doi.org/10.24188/recia.v9.nS.2017.530
de Bruijn, P. B., Jeppsson, K.-H., Sandin, K., & Nilsson, C. (2009). Mechanical properties of lime–hemp concrete containing shives and fibres. Biosystems Engineering, 103(4), 474–479. https://doi.org/10.1016/j.biosystemseng.2009.02.005
Elfordy, S., Lucas, F., Tancret, F., Scudeller, Y., & Goudet, L. (2008). Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Construction and Building Materials, 22(10), 2116–2123. https://doi.org/10.1016/j.conbuildmat.2007.07.016
Ely, R. E., & Moore, L. A. (1956). The Composition of Holocellulose Prepared from Various Forages and the Corresponding Feces. Journal of Dairy Science, 39(12), 1706–1711. https://doi.org/10.3168/jds.S0022-0302(56)94912-8
European Comission. (2015). Informe de situación sobre la acción por el clima, incluidos el informe sobre el funcionamiento del mercado europeo del carbono y el informe sobre la revisión de la Directiva 2009/31/CE, relativa al almacenamiento geológico de dióxido de carbono. (2015).
Ferreira, S. R., Lima, P. R. L., Silva, F. A., & Toledo Filho, R. D. (2012). Influência de ciclos molhagem-secagem em fibras de sisal sobre a aderência com matrizes de cimento Portland. Matéria (Rio de Janeiro), 17(2), 1024–1034. https://doi.org/10.1590/S1517-70762012000200008
Flores Ledesma, A., Barcelo Santana, F., Bucio Gaindo, L., Arenas Alatorre, J. A. J. Á., Ruvalcaba Sil, J. L. J. L., Barceló Santana, F. H., … Ruvalcaba Sil, J. L. J. L. (2016). Análisis químico elemental y de fases por medio de PIXE, DSC, TGA y DRX en MTA Angelus y un cemento Portland blanco. Revista Odontológica Mexicana, 20(3), 187–192. Retrieved from http://www.medigraphic.com/facultadodontologiaunam
Gómez-Zamorano, L. Y., & Castillo-Linton, C. E. (2016). Modificación de las propiedades de matrices cementantes mediante la adición de partículas de nanosílice. Revista ALCONPAT, 6(2), 101–115. https://doi.org/10.21041/ra.v6i2.132
Guevara Fallas, G., Hidalgo Madrigal, C., Pizarro García, M., Rodríguez Valenciano, I., Rojas Vega, L. D., & Segura Guzmán, G. (2012). Efecto de la variación agua/cemento en el concreto. Revista Tecnología En Marcha, 25(2), 80. https://doi.org/10.18845/tm.v25i2.1632
Harilal, M., Rathish, V. R., Anandkumar, B., George, R. P., Mohammed, M. S. H. S., Philip, J., & Amarendra, G. (2019). High performance green concrete (HPGC) with improved strength and chloride ion penetration resistance by synergistic action of fly ash, nanoparticles and corrosion inhibitor. Construction and Building Materials, 198, 299–312. https://doi.org/10.1016/j.conbuildmat.2018.11.266
Hasanbeigi, A., Price, L., & Lin, E. (2012, October). Emerging energy-efficiency and CO 2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2012.07.019
Herath, C., Gunasekara, C., Law, D. W., & Setunge, S. (2020). Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Construction and Building Materials, 258, 120606. https://doi.org/10.1016/j.conbuildmat.2020.120606
Instituto Nacional de Ecología y Cambio Climático (INECC). (2014). Inventario nacional de emisiones de gases y compuestos de efecto invernadero. (2014). Retrieved February 24, 2023, from https://www.gob.mx/inecc/acciones-y-programas/inventario-nacional-de-emisiones-de-gases-y-compuestos-de-efecto-invernadero
Juárez-Alvarado, C. A., Magniont, C., Escadeillas, G., Terán-Torres, B. T., Rosas-Diaz, F., & Valdez-Tamez, P. L. (2022). Sustainable Proposal for Plant-Based Cementitious Composites, Evaluation of Their Mechanical, Durability and Comfort Properties. Sustainability, 14(21), 14397. https://doi.org/10.3390/su142114397
Juárez, C., Rodríguez López, P., Rivera Villarreal, R., & Rechy de Von Roth, M. de los Á. (2004). Uso de fibras naturales de lechuguilla como refuerzo en concreto. Ingenierías, VII(22), 7–19. Retrieved from https://core.ac.uk/reader/76600596
Kestur G., S., Flores-Sahagun, T. H. S., Dos Santos, L. P., Dos Santos, J., Mazzaro, I., & Mikowski, A. (2013). Characterization of blue agave bagasse fibers of Mexico. Composites Part A: Applied Science and Manufacturing, 45, 153–161. https://doi.org/10.1016/j.compositesa.2012.09.001
Krishna, N. K., Prasanth, M., Gowtham, R., Karthic, S., & Mini, K. M. (2018). Enhancement of properties of concrete using natural fibers. Materials Today: Proceedings, 5(11), 23816–23823. https://doi.org/10.1016/j.matpr.2018.10.173
Kumar Mehta, P., & Monteiro, P. J. M. (2014). Concrete: Microestructure, Properties and Materials (4th ed.). McGraw-Hill Education. Retrieved from https://www.accessengineeringlibrary.com/content/book/9780071797870
Laskowski, J. S., Liu, Q., & O’Connor, C. T. (2007). Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface. International Journal of Mineral Processing, 84(1–4), 59–68. https://doi.org/10.1016/j.minpro.2007.03.006
Le Troëdec, M., Peyratout, C. S., Smith, A., & Chotard, T. (2009). Influence of various chemical treatments on the interactions between hemp fibres and a lime matrix. Journal of the European Ceramic Society, 29(10), 1861–1868. https://doi.org/10.1016/j.jeurceramsoc.2008.11.016
Liu, J. C., Hossain, M. U., Ng, S. T., & Ye, H. (2023). High-performance green concrete with high-volume natural pozzolan: Mechanical, carbon emission and cost analysis. Journal of Building Engineering, 68. https://doi.org/10.1016/j.jobe.2023.106087
Locane, J. J. (2019). Fundamentos: Material lignocelulosico. In Miradas locales en tiempos globales (pp. 23–96). https://doi.org/10.31819/9783954878840-003
López-Sosa, L. B., Alvarado-Flores, J. J., Corral-Huacuz, J. C., Aguilera-Mandujano, A., Rodríguez-Martínez, R. E., Guevara-Martínez, S. J., … Morales-Máximo, M. (2020). A Prospective Study of the Exploitation of Pelagic Sargassum spp. as a Solid Biofuel Energy Source. Applied Sciences, 10(23), 8706. https://doi.org/10.3390/app10238706
Magniont, C., Escadeillas, G., Coutand, M., & Oms-Multon, C. (2012). Use of plant aggregates in building ecomaterials. European Journal of Environmental and Civil Engineering, 16(sup1), s17–s33. https://doi.org/10.1080/19648189.2012.682452
Marques, M. L., Luzardo, F. H. M., Velasco, F. G., González, L. N., Silva, E. J. da, & Lima, W. G. de. (2016). Compatibility of vegetable fibers with Portland cement and its relationship with the physical properties. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(5), 466–472. https://doi.org/10.1590/1807-1929/agriambi.v20n5p466-472
Mohammadkazemi, F., Doosthoseini, K., Ganjian, E., & Azin, M. (2015). Manufacturing of bacterial nano-cellulose reinforced fiber-cement composites. Construction and Building Materials, 101, 958–964. https://doi.org/10.1016/j.conbuildmat.2015.10.093
Nava Jiménez, I. A., & Sánchez Hernández, H. (2020). El sargazo del mar Caribe mexicano. Ciencia, 71(4), 58–61.
Nilimaa, J. (2023). Smart materials and technologies for sustainable concrete construction. Developments in the Built Environment, 15(May), 100177. https://doi.org/10.1016/j.dibe.2023.100177
Niveditha, C., Sarayu, K., Ramachandra Murthy, A., Ramesh Kumar, V., & Iyer, N. R. (2018). Marine Algae for Cement Mortar Strengthening. Journal of Civil Engineering Research, 2014(2A), 23–25. https://doi.org/10.5923/c.jce.201401.05
Nozahic, V., & Amziane, S. (2012). Influence of sunflower aggregates surface treatments on physical properties and adhesion with a mineral binder. Composites Part A: Applied Science and Manufacturing, 43(11), 1837–1849. https://doi.org/10.1016/j.compositesa.2012.07.011
Nozahic, V., Amziane, S., Torrent, G., Saïdi, K., & De Baynast, H. (2012). Design of green concrete made of plant-derived aggregates and a pumice-lime binder. Cement and Concrete Composites, 34(2), 231–241. https://doi.org/10.1016/j.cemconcomp.2011.09.002
Ore B., Y., Pichilingue L, E. R., & Valderrama Negrón, A. C. (2020). Extracción y caracterización del alginato de sodio de la macroalga Macrocystis pyrifera. Revista de La Sociedad Química Del Perú, 86(3), 276–287. https://doi.org/10.37761/rsqp.v86i3.300
Peschard, A., Govin, A., Pourchez, J., Fredon, E., Bertrand, L., Maximilien, S., & Guilhot, B. (2006). Effect of polysaccharides on the hydration of cement suspension. Journal of the European Ceramic Society, 26(8), 1439–1445. https://doi.org/10.1016/j.jeurceramsoc.2005.02.005
Piqué, T. M., & Vászquez, A. (2012). Uso de Espectroscopía Infrarroja con Transformada de Fourier (FTIR) en el estudio de la hidratación del cemento. Concreto y Cemento. Investigación y Desarrollo, 3(2), 62–71. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-30112012000100004&lng=es&tlng=es
Rojas Herrera, C., Cea Lemus, M., Rosas Diaz, F. E., & Cardenas Ramirez, J. P. (2018). Physical, Chemical and Mechanical Characterization of a Prototype Insulating Material Based on Eucalyptus Bark Fiber. IEEE Latin America Transactions, 16(9), 2441–2446. https://doi.org/10.1109/TLA.2018.8789566
Rosas-Díaz, F., García-Hernández, D. G., Mendoza-Rangel, J. M., Terán-Torres, B. T., Galindo-Rodríguez, S. A., & Juárez-Alvarado, C. A. (2022). Development of a Portland Cement-Based Material with Agave salmiana Leaves Bioaggregate. Materials, 15(6000). https://doi.org/10.3390/ma15176000
Rowell, R. (1983). The chemistry of solid wood. In Handbook of Wood Chemistry and Wood Composites (Vol. 19, pp. 17–18). https://doi.org/10.1007/bf00354749
Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172, 566–581. https://doi.org/10.1016/j.jclepro.2017.10.101
Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794. https://doi.org/10.1177/004051755902901003
Technical Association of Pulp an Paper Industry. T 204 cm-97 - Solvent extractives of wood and pulp, Technical Association of Pulp an Paper Industry § (2007). Atlanta, GA USA.
Technical Association of Pulp an Paper Industry. T 211 om-02 Ash in wood , pulp , paper and paperboard : combustion at 525°C, Technical Association of Pulp an Paper Industry § (2007). Atlanta, GA USA, United States of America.
Technical Association of Pulp an Paper Industry. T 222 om-02 - Acid-insoluble lignin in wood and pulp, Technical Association of Pulp an Paper Industry § (2011). Atlanta, GA USA.
Thongsanitgarn, P., Wongkeo, W., Chaipanich, A., & Poon, C. S. (2014). Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Construction and Building Materials, 66, 410–417. https://doi.org/10.1016/j.conbuildmat.2014.05.060
Wise, L., Murphy, M., & D´ Addieco, A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade, 122(2), 35–43.
Zhang, J., & Scherer, G. W. (2011). Comparison of methods for arresting hydration of cement. Cement and Concrete Research, 41(10), 1024–1036. https://doi.org/10.1016/j.cemconres.2011.06.003
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Felipe Rosas-Díaz, Aldo Martínez Arreguin, Juan Carlos Hernández, César A. Juárez-Alvarado, Sergio A. Galindo-Rodríguez, David Gilberto García-Hernández

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.