Axial compression behavior of fully encased composite columns reinforced with longitudinally in glass fiber reinforced polymer (GFRP) bars

Authors

  • Sasikumar P. Kumaraguru College of Technology, Anna University, Coimbatore, (India)
  • Makesh Kumar S. Government College of Technology, Anna University, Coimbatore, (India)

DOI:

https://doi.org/10.7764/RDLC.24.1.196

Keywords:

GFRP bar, fully encased composite columns, axial load, peak ductility, alkali resistant glass fiber.

Abstract

The current study investigated the axial compression behavior of fully encased composite columns (FECC) reinforced with glass fiber reinforced polymer (GFRP) bars. Totally three conventional FEC columns and three FEC columns with the addition of alkali resistant glass fiber (ARGF) made with High Strength Concrete (HSC) are tested under axial compression. The inclusion of ARGF enhances the adhesion between the concrete and the steel reinforcement in the FECC. This increased bond strength facilitates a more efficient transfer of stresses and strains, thereby improving the load-carrying capacity. The dimensions of the FEC columns are 150mm x 150mm x 1000mm, and the steel section is ISMB 50mm x 100mm. All columns were designed as per Indian Standard (IS). The main parameter was studied in axial load carrying capacity, axial-deformation response, failure mode, peak ductility, and stiffness. The experimental results of conventional FEC columns were compared to those of FEC columns with the addition of AFGR. The axial load-carrying capacity and stiffness increased by 3.77% and 32.27%, respectively, while ductility decreased by 15.46% compared to conventional FEC columns. The analytical study was conducted in all columns; the analytical results were agreed to the experimental results.

Downloads

Download data is not yet available.

References

Aydın, F., Arslan, Ş., Şahi, S. N. A., & Toplu, E. (2024). Investigation of wear performance of GFRP profiles under different environmental conditions. Revista de la construcción, 23(3), 652-673.

Begum, M., Driver, RG, & Elwi, A.E. (2018). Parametric study on eccentrically loaded partially encased composite columns under major axis bending. Steel Composite Structure, 19(5), 1299–1319.

Carrillo, J., Araya-Letelier, G., & Tarque, N. (2025). Shear stress and angular strain prediction of concrete panels reinforced with GFRP bars. Engineering Structures, 327, 119610.

Chen, Y.Y., Wang, T., Yang, J., & Zhao, X.Z. (2010). Test and numerical simulation of partially encased composite columns subject to axial and cyclic horizontal loads. International Journal of Steel Structure, 4, 385–393.

Chicoine, T., Tremblay, R., Massicotte, B., & Ricles, J.L. (2002). Behavior and strength of partially encased composite columns with built-up shapes. ASCE-Journal of Structural Engineering, 128(3), 279–288.

Fellouh, A., Benlakeha,l N., Piloto, P., Ramos, A., & Mesquita, L. (2017). Load carrying capacity of partially encased columns for different fire ratings. Fire Research, 1, 380–190.

Gao, T., Zhao, Z., Gao, H., & Zhou, S. (2023). Axial capacity of GFRP–concrete–steel composite columns and prediction based on artificial neural net-work. Mechanics of Advanced Materials and Structures, 1-16.

Guo, Y. C., Xiao, S. H., Zeng, J. J., Su, J. Y., Li, T. Z., & Xie, Z. H. (2022). Behavior of concrete-filled FRP tube columns internally reinforced with FRP-steel composite bars under axial compression. Construction and Building Materials, 315, 125714.

Han, S., Zhou, A., Fan, C., Xiao, G., & Ou, J. (2023). Axial-flexural performance of columns reinforced by steel-FRP composite bars and FRP ties. Compo-site Structures, 322, 117435.

Huang, L., Gao, C., Yan, L., Yu, T., & Kasal, B. (2018). Experimental and numerical studies of CFRP tube and steel spiral dual-confined concrete compo-site columns under axial impact loading. Composite Building Engineering, 152, 193–208.

IS–10262:2019. Concrete Mix Proportioning Guidelines. Bureau of Indian Standards: New Delhi, India.

IS–456:2000. Plain Concrete and Reinforced. In Bureau of Indian Standards, New Delhi, India.

Izadi, A., Teh, L. H., Ahmed, A., & Polak, M. A. (2023, May). Finite element analysis of square FRP-concrete-steel columns under eccentric compression. In Structures (Vol. 51, pp. 79-90). Elsevier.

Ji, J., Li, J., Jiang, L., Ren, H., Wang, Q., Wang, X., & Zhang, Z. (2022). Mechanical Behavior of Special-Shaped Reinforced Concrete Composite Columns Encased with GFRP Core Columns. Buildings, 12(11), 1895.

Li, S., Chan, T. M., & Young, B. (2022). Behavior of GFRP-concrete double tube composite columns. Thin-Walled Structures, 178, 109490.

Li, S., Chan, T. M., & Young, B. (2022a). Compressive behavior and analysis-oriented model of FRP-confined engineered cementitious composite col-umns. Engineering Structures, 270, 114869.

Li, S., Chan, T. M., & Young, B. (2023). Experimental investigation on axial compressive behavior of novel FRP-ECC-HSC composite short column. Composite Structures, 303, 116285.

Liu, J., Xu, T., Guo, Y., Wang, X., & Frank, Chen, Y. (2019). Behavior of circular CFRP-steel com-prostituted high-strength concrete columns under axial compression. Composite Structure, 211, 596–609.

Ma, K., Cao, X., Song, J., Meng, X., & Qiao, L. (2023). Axial compressive behavior of concrete-filled steel tubes with GFRP-confined UHPC cores. Journal of Constructional Steel Research, 200, 107632.

Callaghan, O., chanR. B., Lacroix, D., & Kim, K. E. (2022). Experimental investigation of the compressive behaviour of GFRP wrapped spruce-pine-fir square timber columns. Engineering Structures, 252, 113618.

Park, J.W., & Choi, S.M. (2013). Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads. Steel Com-posite Structure, 14(5), 453–472.

Sasikumar, P., & Manju, R. (2022). Performance of high strength concrete encased steel composite columns. Revista Romana de Materiale, 52(4), 374-384.

Sasikumar, P., & Manju, R. (2022a). Structural behaviour of high strength concrete columns reinforced with glass fiber reinforced polymer bars under axial loading. Revista Romana de Materiale, 52(4), 412-423.

Su, R., Li, X., & Xu, S. Y. (2022). Axial behavior of circular CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns. Construction and Building Materials, 353, 129159.

Sun, L., Liu, Y., Wang, H., & Shi, F. (2023). Local and post-local buckling behavior of welded square high-strength steel tubes with concrete-infilled re-straints. Thin-Walled Structures, 183, 110381.

Sundarraja, M.C., & Prabha, G.G. (2012). Experimental study on CFST members strengthened by CFRP composites under compression. Journal of Construction Steel Research, 72(5), 75–83.

Tahzeeb, R., Alam, M., & Muddassir, S. M. (2022). A comparative performance of columns: reinforced concrete, composite, and composite with partial C-FRP wrapping under contact blast. Materials Today: Proceedings, 62, 2191-2202.

Tavakol, M., & Kazemi, H. H. (2025). Comparative assessment of concrete columns reinforced with hybrid steel-GFRP, GFRP, and steel bars under cyclic lateral loading. In Structures, 71, 108034.

Wang, G., Wei, Y., Miao, K., Zheng, K., & Dong, F. (2022). Axial compressive behavior of seawater sea-sand coral aggregate concrete-filled circular FRP-steel composite tube columns. Construction and Building Materials, 315, 125737.

Wang, Q.L., Zhao, Z., Shao, Y.B., & Li, QL (2017). Static behavior of axially compressed square concrete filled CFRP-steel tubular (S-CF-CFRP-ST) columns with moderate slenderness. Thin-Walled Structure, 110, 106–122.

Yang, L., Wang, H., & Gao, S. (2022). Study on Axial Compression Behavior of Concrete Short Columns Confined by Flax/Glass Fiber Hybrid-Reinforced Epoxy Resin Composites. Polymers, 14(3), 517.

Yi, T. A. O., Sijun, Y. E., & Jianfei, C. H. E. N. (2022). Axial compression capacity of square steel-concrete-FRP-concrete composite columns. Journal of Building Structures, 43(3), 148.

Zhang, F., Hu, Z., Xiao, J., Xie, S., Zhang, B., & Fang, H. (2023). Mechanical behavior of GFRP-recycled concrete-steel multitube concrete columns under axial compression. Journal of Building Engineering, 77, 107529.

Zhang, P., Lv, X., Zhang, H., Liu, Y., Chen, B., Gao, D., & Sheikh, S. A. (2022). Experimental investigations of GFRP-reinforced columns with composite spiral stirrups under concentric compression. Journal of Building Engineering, 46, 103768.

Zhang, X., Kong, W., Zhu, Y., & Chen, Y. (2022a). Investigation on various section GFRP profile strengthening concrete filled GFRP tubular columns. Composite Structures, 283, 115055.

Downloads

Published

2025-04-27 — Updated on 2025-04-28

Versions

How to Cite

P., S., & S., M. K. . (2025). Axial compression behavior of fully encased composite columns reinforced with longitudinally in glass fiber reinforced polymer (GFRP) bars. Revista De La Construcción. Journal of Construction, 24(1), 196–208. https://doi.org/10.7764/RDLC.24.1.196 (Original work published April 27, 2025)