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Abstract: In this study, 1/2 scaled 16 reinforced concrete beams were compared in terms of concrete type, concrete 

strength, and stirrup spacing. The variables of this study consist of self-compacting concrete and normal concrete as con-

crete type, C30 and C60 as concrete strength, and without stirrup, 20 cm, 10 cm and 5 cm spacing as stirrup spacing. All 

elements were tested with 4-point bending mechanism. The stiffness, ductility, load bearing capacity and energy consump-

tion capacity values of the beams were obtained from the load-displacement curves acquired from the experimental study 

and the elements were compared over them, and the damages of the beams during the experiments were interpreted. In 

addition to the experimental study, the numerical analyzes of the beams were conducted with the finite element analysis 

software. Experimental study results were validated by finite element analysis. When all the results were examined, it was 

concluded that although the initial stiffness of SCC (self-compacting concrete) was less than NC (normal concrete), the 

ductility of SCC was higher than that of NC, especially in high strength concretes. 
 

Keywords:  reinforced concrete beam, behavior, numerical analysis, stirrup spacing, self-compacting concrete. 
 

 

1. Introduction 

 

Reinforced concrete structures that have shaped our world for more than 150 years are indispensable to the construction 

sector with their economic and mechanical advantages. Although more than a century and a half have passed since its inven-

tion, it is still being studied and many weaknesses are trying to be developed. In order to improve the weaknesses of concrete, 

special concrete has been invented. Self-compacting concrete (SCC), which emerged in Japan in the 1980s, was found due to 

difficulties in placement and compacting in normal concrete (NC). (Okamura, 1997; Okamura and Ouchi, 1999).  

 

SCCs are defined as the concrete having the ability to settle in the mold and pass through the rebars without being decom-

posed with their own weight without the need for any external effects (vibration, rodding, etc.). The SCC must have a high 
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fluency. At the same time, decomposition and water desorption (bleeding) events should not occur. While high fluidity is 

achieved by super plasticizers, it is necessary to increase the amount of fine material or use viscosity-increasing additives to 

avoid decomposition. (Topçu et al., 2008). Historically, more than a century of time between NC and SCC suggests that many 

more studies are needed to be conducted on the SCC. Therefore, more comparative studies are needed to definitively deter-

mine whether SCC should categorically replace NC.  

 

1.1. Literature review 

 

As a result of extensive literature research, it has seen that many experimental and theoretical researches about SCC have 

been done (Ahmad et al., 2017; Akinpelu et al., 2017; Alexandra et al., 2018; Altın et al., 2006; Alyousif et al., 2015; Aydın 

and Bayrak, 2016; Benaicha et al., 2019; El Zareef and El Madawy, 2018; Fiol et al., 2018; Hemzah et al., 2020; Jindal et al., 

2019; Kamal et al., 2018; Khan and Ayub, 2020; Mahmod et al., 2018; Niewiadomski et al., 2018; Pająk, 2016; Pająk and 

Ponikiewski, 2017; Shatarat et al., 2018; Akça et al., 2023; Alabdulkarim et al., 2024). It is one of these to discover the flexural 

strength properties of beam specimens produced by SCC. However, the researchers produced specimens by using pure con-

crete instead of a reinforced concrete system in their work. This does not help to fully understand the effect of physical and 

mechanical differences of SCC on reinforced concrete systems used in buildings. In this study, it will be investigated how 

reinforced concrete beams with different stirrup spacing and concrete strength produced by SCC will behave differently from 

the same properties of reinforced concrete beams produced with NC.  

 

Beams, which are one of the supporting elements in reinforced concrete structures, are the structural elements that transfer 

the loads onto the columns. It is very important for building safety to investigate and develop the behavior of these elements 

under various loads. There are many studies in the literature on reinforced concrete beams (Abd et al., 2023; Alam and Hus-

sein, 2017; Alhadid and Youssef, 2017; Ebead, 2015; El-Sayed, 2017; Jiang et al., 2018; Kaltakci and Kamanli, 2001; 

Kamanlı, 1999; Kodur et al., 2018; Mohammed, 2017; Özkılıç et al., 2023; Pawłowski and Szumigała, 2015; Qeshta et al., 

2015; Yang et al., 2017; Yousef et al., 2018). With these researches, the behavior of reinforced concrete beams under various 

loads and conditions was tried to be determined.  

 

It is known that stirrup is very important in terms of shear safety in reinforced concrete beams. Studies on the effect of 

stirrup spacing on the behavior of reinforced concrete beams are not much. In these studies, the effect of stirrup on reinforced 

concrete beam behavior was investigated and important findings have been obtained (Cengiz, 2019; Cladera and Mari, 2005; 

Kamanli and Unal, 2018; Rahal and Alrefaei, 2018; Sin et al., 2011; Unal et al., 2018; Yuan and Wang, 2019). 

 

Cengiz et al., 2020, experimentally tested reinforced concrete beams produced with SC and NC concretes. The strength of 

the concretes is 30 MPa and 60 MPa. The other parameter of the study is the stirrup spacing. The stirrup spacings they used 

to be 0, 20, 10 and 5 cm. The researchers chose the beam dimensions as 25 cm height and 12.5 cm width.  In the results, only 

load-displacement graphs were given. In this study, the tests of beams produced with both C30 and C60 strength concrete 

were carried out. In addition to the load-displacement graphics, rigidity, energy consumption, slope-angle graphics are also 

given in the test results. Experimental study was supported by numerical analysis. 

 

In the light of all these evaluations, an experimental study was carried out to investigate the flexural behavior of reinforced 

concrete beams produced with SCC. In this study, 1/2 geometrically scaled 16 reinforced concrete beam specimens were 

tested under monotonic loading with 4-point bending mechanism. Concrete type, concrete strength and stirrup spacing are the 

variables of this study. As a result of the study, load-displacement curves, stiffness graphs and energy consumption graphs of 

the beams were drawn and the results were evaluated comparatively. Furthermore, the cracks were drawn during the experi-

mental study and the effects of the cracks on the beam behavior were examined. In addition to the experimental study, the 

numerical analyzes of the beams were conducted with the finite element analysis software (Ansys, Release 19.2). Experi-

mental study results were validated by finite element analysis. According to the results, it was seen that the reinforced concrete 

beams produced with SCC consumed more energy and displaced than those produced with NC.  
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When the literature is examined, most of the studies with SCC are done without using reinforcement. However, reinforce-

ment in the concrete must be used in the buildings. In this study, reinforcement was used in beams produced with SCC. With 

this study, the effect of compressive strength and stirrup spacing changes on reinforced concrete beams produced with SCC 

were investigated. In addition, SCC and NC beams were compared in terms of load bearing capacity, ductility, stiffness, 

energy consumption and damage during the test.  

This study was carried out to investigate the difference in the behavior of NC and SCC with the same strength in reinforced 

concrete beams under different transverse reinforcement density. In the numerical analysis, a more realistic modeling was 

performed by using different material properties for SCC and NC. In this study, firstly numerical modeling was performed 

based on the experimental results, then the results obtained from the numerical analysis were compared with the experimental 

results and finally the behavioral properties obtained in the conclusion section were discussed. 

 

2. Materials and methods  

 

In this study, the bending behavior of reinforced concrete beams produced with SCC and NC was numerically investigated. 

Within the scope of the numerical study, a total of 16 reinforced concrete beams with 1/2 scale were tested under 4-point 

bending (Figure 1). Concrete type, concrete strength and stirrup spacing are the variables of this study. SCC and NC were 

chosen as concrete type, and C30 (cylinder compressive strength approximately 30 MPa) and C60 (cylinder compressive 

strength approximately 60 MPa) were selected as concrete strength.  Reinforced concrete beams are designed with 5 cm, 10 

cm, 20 cm stirrup spacings and without stirrups (Figure 4). For this reason, the beams are designed as C30 and C60 concrete 

class. Sample dimensions are 125x250x2500 mm. In order for the beams to exhibit bending behavior, the ratio of shear span 

to effective depth (a/d) was chosen as 3.33. The properties of the test samples are shown in Table 1. In the test elements, N 

and S represent the type of concrete, 0-20-10-5 represent stirrup spacing, as well C30 and C60 represent concrete compressive 

strength. 

 

Table 1. The properties of specimens. 

Specimen Concrete type Compressive strength Stirrup spacing 

N-C30-0 NC 30 MPa - 

N-C30-20 NC 30 MPa 200 mm 

N-C30-10 NC 30 MPa 100 mm 

N-C30-5 NC 30 MPa 50 mm 

N-C60-0 NC 60 MPa - 

N-C60-20 NC 60 MPa 200 mm 

N-C60-10 NC 60 MPa 100 mm 

N-C60-5 NC 60 MPa 50 mm 

S-C30-0 SCC 30 MPa - 

S-C30-20 SCC 30 MPa 200 mm 

S-C30-10 SCC 30 MPa 100 mm 

S-C30-5 SCC 30 MPa 50 mm 

S-C60-0 SCC 60 MPa - 

S-C60-20 SCC 60 MPa 200 mm 

S-C60-10 SCC 60 MPa 100 mm 

S-C60-5 SCC 60 MPa 50 mm 
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(a) 

 
(b) 

 
(c) 

 

(d) 

Figure 1. Reinforcement rebar detailing (a) without stirrup, (b) 200 mm, (c) 100 mm, (d) 50 mm. 
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2.1. Test setup and loading protocol 

 

A total of 16 specimens were analyzed under monotonic loading using ANSYS Workbench 19.2. The support and loading 

conditions in the analysis model used in the numerical study were obtained from the experimental setup carried out by the 

authors at Konya Technical University, Department of Civil Engineering, Earthquake Research Laboratory. In the model, 

bearings and loading plates are designed rigid (Figure 2).  

 

  
Figure 2. Conditions of analysis. 

 

The displacement capacity of the specimens was also determined from the data obtained from the experimental study. The 

loading protocol was designed according to the displacement capacity of the specimens (Figure 3). During the analysis, dis-

placement-controlled loading method was applied to the specimens. As a result of the analysis, the load values corresponding 

to each displacement value were determined. Load-midpoint displacement graphs were plotted with the help of the obtained 

data. 

 

 
Figure 3. Loading protocol. 

 

2.2. Material properties  

 

The SOLID65 element was used to model the concrete. This element has eight nodes with three degrees of freedom at each 

node - node translations in x, y and z directions. This element is capable of plastic deformation in concrete applications, 

cracking in three orthogonal directions and crushing in compression (Figure 4). 
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Figure 4. SOLID65 geometry (ANSYS, 2018). 

 

The following equation which proposed by Hognestad have used for computing the multilinear isotropic stress–strain 

curve for the concrete (Hognestad, 1951), where σc and εc are concrete stress and concrete strain in general, respectively; fc is 

the concrete compressive strength; εco is the concrete strain at peak stress. The tensile strength of concrete was determined by 

4-point bending test in order to be appropriate for the loading condition to be applied in the experimental study and numerical 

study.  

           

2

2
f c c

c c

co co

 


 

  
 = − 
   

      (1) 

 

The stress-strain values determined according to the Hognestad model for NC are shown in Table 2. The modulus of 

elasticity was calculated using the initial slope of the σ-ε graph obtained from the values. The Modulus of Elasticity for SCC 

was used by decreasing it by 15% (Ünal et al., 2023). Because it was determined that the rigidity values of the reinforced 

concrete beam samples tested in this study up to tensile breakage decreased at this rate. The Poisson ratio is taken as 0.2 for 

both concrete samples. Since the fine aggregate ratio is high in the self-compacting concrete samples, the interfacial area has 

increased. Therefore, the tensile strength of concrete increases compared to normal concrete. In addition, the concrete tensile 

strength of SCC samples was increased by 7.5% as the aggregates in the concrete mixture were distributed more 

homogeneously than normal concrete (Ahmad et al., 2017) (Table 3). 2-node linear displacement truss element LINK180 is 

adopted for the beam longitudinal reinforcement and stirrups. The element is a uniaxial tension-compression element with 

three degrees of freedom at each node: translations in the nodal x, y, and z directions (Figure 5). 

 

Table 2. Multilinear isotropic stress-strain values. 

Concrete type 
Strain (ε) 

0.001025 0.0015 0.002 0.0025 0.003 

N-C30 25.40 31.37 33.32 31.24 25.00 

N-C60 45.17 55.55 59.26 55.25 44.45 

S-C30 25.65 31.54 33.65 31.54 25.24 

S-C60 48.62 59.79 63.78 59.79 47.84 

 

Table 3. Mechanical specifications of concrete. 

Element 

type 
Concrete type 

Ultimate compressive strength 

(fc) 
Elastic modulus (MPa) 

Poisson’s 

ratio 

Ultimate tensile 

strength (fct) 

SOLID65 

NC 
33.32 MPa 24781.75 

0.2 

3.22 MPa 

59.26 MPa 44074.63 5.78 MPa 

SCC 
33.65 MPa 21273.10 3.43 MPa 

63.78 MPa 40320.91 6.26 MPa 
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Figure 5. LINK180 geometry (2018). 

 

The beams were designed according to Turkish Building Earthquake Code 2018 (TBEC, 2018). Stirrup spacings used 

according to the code are modelled as 0, 20, 10 and 5 cm. Beam dimensions were also designed as 50 cm height and 25 cm 

width to meet the minimum requirements in the code. However, since the beam dimensions were modelled in 1/2 scale in the 

experimental study, they were scaled to 25 cm height and 12.5 cm width in the models. Therefore, 8 mm diameter longitudinal 

reinforcements and 6 mm diameter stirrups were used in the beams. 

 

Table 4. Mechanical specifications of reinforcement. 

Element 

type 
Reinforcement 

Yield strength re 

(MPa) 

Tensile strength rm 

(MPa) 
Rm/Re 

Poisson’s 

ratio 

Elastic modulus 

(MPa) 

LINK180 
Ø6 337.33 483.4 1.43 

0.3 
208.210 

Ø8 318.93 428.3 1.34 204.183 

 

2.3. FE Model numerical assessments 

 

Since concrete is a complex construction material and concrete is regarded as a quasi-brittle material that behaves 

differently under tension and compression, many models have been proposed for numerical modelling of concrete. In this 

study, Willam-Warnke “Constitutive model for the triaxial behavior of concrete”  was used for the crack model of concrete 

material (Willam, 1974). In the literature, this model has been used in experimental and numerical studies on simply supported 

beams under monotonic load since the experimental and numerical results are compatible (Hosseinimehrab et al., 2021; Ugur 

and Unal, 2022). Shear transfer coefficients was taken 0.3 for open crack, 1.0, for close crack. These coefficients are used to 

reduce the error rate when obtaining the load-displacement relationship derived by the finite element method. The mechanical 

behavior of reinforcement is assumed to be elastic bilinear under monotonic stress.  

 

The reinforcement initially exhibits a linear elastic part, followed by a yield point, strain hardening and then fracture. The 

main inputs to include the steel material model are modulus of elasticity, tangent modulus and yield strength. The tangent 

modulus (k) is taken as 20000 MPa in the analysis. The constitutive models for steel and concrete under compression is given 

in Figure 6. 

    
Figure 6. Constitutive model of (a) reinforcement, (b) concrete under compression. 

 

https://doi.org/10.7764/RDLC.23.2.271
http://www.revistadelaconstruccion.uc.cl/


Revista de la Construcción 2024, 23(2) 271-295 
278 of 295 

 

 
 

 
 

Revista de la Construcción 2024, 23(2) 271-295; https://doi.org/10.7764/RDLC.23.2.271                                                  www.revistadelaconstruccion.uc.cl  
                                                                                                                                                                                                                           Pontificia Universidad Católica de Chile  

 

Figure 7 shows the mesh of the beam specimen. The load and boundary conditions of the FE model were set to be the same 

as the beam in the experimental study. The a/d ratio of the samples was assumed to be 3.33. All displacements at one support 

of the beam are limited. Displacement along the x direction is allowed for the other support of the beam. Displacement loads 

equal to the experimental study are applied to the rigid loading plates on the beam. Before the numerical study, preliminary 

analyses were performed to verify the experimental study. In addition, the mesh dimensions and analysis properties were 

converged with the experimental study as a result of many preliminary analyses, and finite element and analysis properties 

were obtained by optimizing for all models. The nonlinear specimen models were analyzed under monotonic load. 

 

 

 
Figure 7. FE model of beams. 

 

3. Results and analysis 

 

This study investigated the behavior of NC and SCC in reinforced concrete beams. 16 reinforced concrete beams were 

designed at 1/2 scale and analyzed under 4-point bending. In all analyses carried out, the beams reached the yield point prior 

to failure. Stress concentrations in the flexural region occurred in all test specimens until yielding.  In the specimens without 

stirrups, flexural behavior was observed up to any displacement value and shear behavior was observed after this value. S-

C30-0, N-C30-0, N-C60-0 and S-C60-0 elements reached failure due to shear stresses after yielding. In other specimens, only 

flexural behavior was observed until failure. 
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The load-displacement curves obtained from the numerical analysis are shown in Figure 8. From the load-displacement 

curves of the specimens, the general beam behavior, failure modes, strengths, stiffness, ductility values and energy consump-

tion capacities were determined and the results were evaluated. Load-displacement, angle of deflection and cumulative energy 

consumption curves were used to compare the specimens. The specimens tested for each configuration are shown in Table 5. 

The data obtained from all specimens are shown in Table 6. 

 

Table 5. Specimen tested for each configuration. 

Comparison Specimens 

Effect of stirrup spacing 

A) N-C30-0, N-C30-20, N-C30-10, N-C30-5 

B) S-C30-0, S-C30-20, S-C30-10, S-C30-5 

C) N-C60-0, N-C60-20, N-C60-10, N-C60-5 

D) S-C60-0, S-C60-20, S-C60-10, S-C60-5 

Effect of concrete type 

A) N-C60-0 and S-C60-0 

B) N-C60-20 and S-C60-20 

C) N-C60-10 and S-C60-10 

D) N-C60-5 and S-C60-5 

Effect of concrete strength 

A) S-C30-0 and S-C60-0 

B) S-C30-20 and S-C60-20 

C) S-C30-10 and S-C60-10 

D) S-C30-5 and S-C60-5 

 

3.1. Effect of stirrup spacing 

 

When the beam specimens designed with the same material properties and with different stirrup spacings were compared, 

it was found that the yield points of the beams with the same stirrup spacing were in the range of 40 - 45 kN. The yield strength 

of the NC beams is higher than the SCC beams. This is due to the amount of coarse aggregate in the concrete content. In fact, 

the proportion of coarse aggregate is higher in NC than in SCC. 

 

The load-displacement graphs of the specimens for variation of stirrup spacing are shown in Figure 8. In general, an in-

crease in stirrup spacing resulted in an increase in displacement. As the stirrup spacing increases, the failure mode of the 

members approaches shear failure. According to the graphs, N-C30-5 was the specimen with the highest load capacity, bearing 

a load of 51.6 kN. However, N-C30-5 fractured at a displacement range of approximately 90 mm due to a sudden and severe 

compressive fracture during loading, consuming less energy than the other specimens. Shear fracture occurred in all specimens 

without stirrups.  
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(c) 

  

 
(d) 

Figure 8. Load-displacement graphs for variation of stirrup spacing (a) N-C30, (b) S-C30, (c) N-C60, (d) S-C60. 

 

The energy consumption graphs for variation of stirrup spacing are shown in Figure 9. N-C60 specimens, the beam with 

10 cm stirrups consumed the most energy of all the other specimens. It can be seen that the energy consumption values of the 

low stirrup and no stirrup specimens are lower than the other specimens. The energy consumption of all specimens at the yield 

point is between 2.81 kN.m and 11.70 kNm. The specimen with the highest energy consumption is S-C30-5 and the specimen 

with the lowest energy consumption is N-C60-0. 
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(d) 

Figure 9. Energy consumption graphs for variation of stirrup spacing (a) N-C30, (b) S-C30, (c) N-C60, (d) S-C60. 

 

 

3.2. Effect of concrete type 

 

To investigate the effect of concrete type on the behavior of reinforced concrete beams, beams designed with a concrete 

strength of 60 MPa and with the same stirrup spacing were compared.  Load-displacement graphs for the variation in concrete 

type are shown in Figure 10. When the graphs are examined, it can be seen that the load carrying capacity of the NC beams 

is 12.05% higher in the specimens with no stirrups, 7.77% higher in the RC beams with 20 cm stirrup spacing, 4.40% higher 

in the RC beams with 10 cm stirrup spacing and 8.84% higher in the RC beams with 5 cm stirrup spacing compared to SCC. 

On the other hand, with the exception of the beam with 5 cm stirrup spacing, SCC has a higher displacement value compared 

to NC than all other beams. This had a direct effect on the energy plots. The highest displacement value was calculated for S-

C60-20 with a displacement value of 124.7 mm. 
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(b) 

 
(c) 

 
(d) 

Figure 10. Load-displacement graphs for the variation in concrete type (a) 0 cm, (b) 20 cm, (c) 10 cm, (d) 5 cm. 

 

When all the graphs in Figure 11 are analyzed, it can be seen that the energy consumption capacity of the elements produced 

using SCC is the same or about 25% less than the elements produced using NC. The highest energy was consumed by N-C60-

10 with an energy value of 7.46 kN. 
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(d) 

Figure 11. Energy consumption graphs for the variation in concrete type (a) 0 cm, (b) 20 cm, (c) 10 cm, (d) 5 cm. 

 

3.3. Effect of concrete strength 

 

To investigate the effect of concrete strength on the behavior of reinforced concrete beams, SCC beams designed with the 

same stirrup spacing were compared. Load-displacement graphs for the change in concrete strength are shown in Figure 12. 

The beams designed in both concrete strengths have similar load carrying capacities. The maximum displacement value is 

150 mm for specimen S-30-5. The minimum displacement was observed for S-C60-0. 
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(b) 

 
(c) 

 
(d) 

Figure 12. Load-displacement graphs for the change in concrete strength (a) 0 cm, (b) 20 cm, (c) 10 cm, (d) 5 cm. 

 

When the energy graphs for the change in concrete strength are analyzed, it is seen that the energy consumption capacity 

of SCC beams with C30 strength is higher than that of beams with C60 strength (Figure 13). S-C30 beams with 5 cm and 10 

cm stirrup spacing consumed approximately the same amount of energy as S-C60 beams with the same stirrup spacing. Alt-

hough the cumulative energy consumption was approximately the same for specimens with 5 cm and 20 cm stirrups, the 

energy consumption of S-C60 specimens at yield was higher than that of S-C30 specimens. 
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(d) 

Figure 13. Energy consumption graphs of group 3 (a) 0 cm, (b) 20 cm, (c) 10 cm, (d) 5 cm. 

 

The data obtained from the test was given in Table 6. When the table is examined, N-C60-0 has 41.91 kN load at the yield 

point. However, the most displaced element was S-C30-5 with a displacement value of 150.6 mm, while the least displaced 

element was N-C60-0 with a displacement value of 76.47 mm. On the other hand, the experimental study results are examined, 

the specimen with the highest load bearing capacity is N-C60-5 with a value of 51.48 kN. However, the highest displaced 

element was S-C30-5 with a displacement value of 160.3 mm, while the lowest displaced was N-C60-0 with a displacement 

value of 70.22 mm. The ductility rates obtained by taking the ratio of fracture to yield displacement in the test specimens are 

shown in Table 6. All test members reached the yield point and all specimens showed flexural behavior up to this point. It 

can be seen that the ductility of the specimens without stirrups and with small stirrup spacing is particularly low compared to 

the other specimens. In addition, the ductility of SCC specimens is higher than NC specimens. 

 

Table 6. Analysis results of all specimens. 

Specimen 

Load capacity (kN)    Deflection (mm) 
Ductility 

ratio 

Yield 

stiffness 

(kN/mm) 
Yield Failure   At Yield    At failure 

N-C30-0 37.11 43.71 6.94 93.55 13.48 5.34 

N-C30-20 37.52 40.76 6.92 134.76 19.47 5.42 

N-C30-10 37.71 40.33 5.98 149.30 24.96 6,30 

N-C30-5 37.88 50.10 5.67 88.74 15.65 6.68 

S-C30-0 39.53 51.06 6.37 82.00 12.87 6.20 

S-C30-20 38.43 42.58 6.30 115.27 18.29 6.10 

S-C30-10 38.97 40.34 6.79 149.28 21.98 5.74 

S-C30-5 36.56 40.93 7.53 150.6 20.00 4.85 

N-C60-0 40.06 48.56 6.10 76.47 12.53 6.56 

N-C60-20 40.68 47.78 6.05 84.90 14.03 6.72 

N-C60-10 41.91 40.35 6.64 85.95 12.94 6.31 

N-C60-5 37.99 43.89 5.31 123.01 23.16 7.15 

S-C60-0 39.78 41.06 6.13 92.74 15.13 6.49 

S-C60-20 40.49 49.15 5.34 124.45 23.30 7.58 

S-C60-10 39.18 48.80 5.59 117.98 21.10 6.83 

S-C60-5 39.84 48.77 6.42 99.36 15.47 6.20 
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3.4. Comparison of experimental and numerical results 

 

All the numerical results obtained in the study were compared with the results of the experimental study. When the damage 

conditions and failure modes of the elements were analyzed, it was found that the stresses and damage in all the elements 

were similar to the damage conditions in the experimental study. As an example, Figure 14 shows the damage conditions of 

the element with 10 cm stirrup spacing and C30 concrete strength made with normal concrete. 

 

 

 
Figure 14. Experimental and numerical analysis comparison of specimen N-C30-10. 

 

The load displacement curves obtained from the numerical study were compared with the load displacement curves ob-

tained from the experimental study. The reinforced concrete behavior in the numerical study was found to be consistent with 

the experimental study. When the general appearance of the load-displacement graphs is analyzed, it is seen that the results 

are consistent with each other (Figure 15).  
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 15. Experimental and numerical comparison of load-displacement curves of specimens,  

(a) N-C30, (b) S-C30, (c) N-C60, (d) S-C60. 

0

20

40

60

0 20 40 60 80 100 120 140 160 180

L
o

a
d

 (
k

N
)

Mid point deflection (mm)

N-C60-0 (FE) N-C60-20 (FE) N-C60-10 (FE)

N-C60-5 (FE) N-C60-0 N-C60-20

N-C60-10 N-C60-5

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180

L
o
a
d

 (
k

N
)

Mid point deflection (mm)

S-C30-0 (FE) S-C30-20 (FE) S-C30-10 (FE)

S-C30-5 (FE) S-C30-0 S-C30-20

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180

L
o
a
d

 (
k

N
)

Mid point deflection (mm)

S-C60-0 (FE) S-C60-20 (FE) S-C60-10 (FE)
S-C60-5 (FE) S-C60-0 S-C60-20
S-C60-10 S-C60-5

https://doi.org/10.7764/RDLC.23.2.271
http://www.revistadelaconstruccion.uc.cl/


Revista de la Construcción 2024, 23(2) 271-295 
292 of 295 

 

 
 

 
 

Revista de la Construcción 2024, 23(2) 271-295; https://doi.org/10.7764/RDLC.23.2.271                                                  www.revistadelaconstruccion.uc.cl  
                                                                                                                                                                                                                           Pontificia Universidad Católica de Chile  

 

 

In the numerical study, the largest deviation with respect to the yield load was 11.66% and this deviation occurred in the 

N-C30-0 specimen. In terms of maximum load carrying capacity, the largest deflections were observed in specimens without 

stirrups. When the deflection with respect to the ultimate displacement was analyzed, the largest deflection of 10.64% was 

observed in specimen N-C60-10. Also, the maximum load carrying capacity and maximum displacement of all specimens are 

given in Table 7. 

 

Table 7. Comparison of results. 

 Analysis results Experimental results 

Specimen 
Load capacity (kN)    Deflection (mm) Load capacity (kN) Deflection (mm) 

Yield Failure Yield Failure  Yield  Failure Yield  Failure 

N-C30-0 37.11 43.71 6.94 93.55 41.44 44.93 8.81 88.66 

N-C30-20 37.52 40.76 6.92 134.76 37.89 45.28 7.51 144.22 

N-C30-10 37.71 40.33 5.98 149.30 38.92 42.34 8.30 151.53 

N-C30-5 37.88 50.10 5.67 88.74 41.73 49.57 6.76 89.66 

S-C30-0 39.53 51.06 6.37 82.00 38.61 46.39 7.63 85.19 

S-C30-20 38.43 42.58 6.30 115.27 38.60 43.85 8.95 111.12 

S-C30-10 38.97 40.34 6.79 149.28 35.27 41.56 8.50 151.61 

S-C30-5 36.56 40.93 7.53 150.6 37.76 42.58 8.97 160.60 

N-C60-0 40.06 48.56 6.10 76.47 42.96 46.26 6.83 70.15 

N-C60-20 40.68 47.78 6.05 84.90 41.71 50.75 6.61 81.27 

N-C60-10 41.91 40.35 6.64 85.95 42.54 41.00 5.34 77.68 

N-C60-5 37.99 43.89 5.31 123.01 39.43 42.93 5.39 121.77 

S-C60-0 39.78 41.06 6.13 92.74 39.40 44.77 7.71 90.65 

S-C60-20 40.49 49.15 5.34 124.45 37.91 46.89 7.36 120.63 

S-C60-10 39.18 48.80 5.59 117.98 38.67 45.02 8.97 131.31 

S-C60-5 39.84 48.77 6.42 99.36 40.01 45.32 8.18 99.60 

 

4. Conclusions and comments 

  

Within the scope of the study, 16 reinforced concrete beams were numerically analyzed in 4-point bending mechanism. In 

the analyses, the flexural behavior of SCC beams and the effect of stirrup ratio and concrete class on the behavior were 

investigated. Load carrying capacities, ductility ratios, energy consumption capacities, stiffness and load-displacement curves 

of the beams were analyzed. The following results were obtained from the data obtained. 

1. Load values at the first crack are lower for SCC beams than NC beams. The maximum load values of SCC beams 

are also lower than those of NC beams. The load carrying capacity of NC beams is higher because the amount of 

coarse aggregate in NC beams is higher than the amount of coarse aggregate in SCC beams. The aggregate size 

in SCC is smaller than in NC. Therefore, the less interfacial transition zone caused the strength of NC to be higher 

than that of SC. 

2. The numerical analyses performed with ANSYS software are consistent with the results of the experimental study. 

3. The tensile reinforcement in all specimens reached the yield point at an average load of 42 kN. The displacement 

values at the same point also gave approximate results. 

4. The initial stiffness of the NC beams was much higher than that of the SCC beams. This shows that NC is more 

rigid than SCC. 

5. The beams produced with SCC consumed similar amounts of energy as those produced with NC.  

6. As a result of the analyses, in general, as the stirrup spacing decreases, the beams are displaced more and as a 

result, the energy consumed and the element ductility increase. In this respect, stirrup spacing in beams is decisive 

for the behavior of beams. 

7. In the light of all these analyses, it is seen that the beams produced with SCC are close to NC beams in terms of 

load carrying capacity and stiffness.  
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8. The use of sufficient shear reinforcement in beams improves beam behavior. As a result of the experimental study, 

it was concluded that over or under use of shear reinforcement in beams adversely affects the beam behavior. 

9. SCC is a more durable concrete than NC. Although they show mechanically similar behavior, it is predicted that 

the behavior of SCC and NC elements under different physical conditions will be different. Therefore, it would 

be appropriate for future studies to examine the behavior of SCC and NC elements subjected to environmental 

effects such as sulfate effect, freeze-thaw effect. 
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